Linear integral equations for conformal mapping of bounded multiply connected regions onto a disk with circular slits

Abstract In this paper we present a boundary integral equation method for the numerical conformal mapping of bounded multiply connected region Ω onto a disk with circular slits. The method is based on some uniquely solvable boundary integral equations with classical adjoint and generalized Neumann kernels. These boundary integral equations are constructed from a boundary relationship satisfied by a function analytic on a multiply connected region. Some numerical examples are presented to illustrate the efficiency of the presented method.

[1]  Mohamed M. S. Nasser,et al.  A Boundary Integral Equation for Conformal Mapping of Bounded Multiply Connected Regions , 2009 .

[2]  J. W. Brown,et al.  Complex Variables and Applications , 1985 .

[3]  Elias M. Stein,et al.  The Cauchy kernel, the Szegö kernel, and the Riemann mapping function , 1978 .

[4]  M. Ismail,et al.  Boundary integral equations with the generalized Neumann kernel for Laplace's equation in multiply connected regions , 2011, Appl. Math. Comput..

[5]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[6]  Werner von Koppenfels,et al.  Praxis der konformen Abbildung , 1959 .

[7]  Paul N. Swarztrauber,et al.  On the Numerical Solution of the Dirichlet Problem for a Region of General Shape , 1972 .

[8]  Philip Rabinowitz,et al.  Methods of Numerical Integration , 1985 .

[9]  Manfred R. Trummer,et al.  Numerical conformal mapping via the Szego¨ Kernel , 1986 .

[10]  Mohamed M. S. Nasser Numerical Conformal Mapping via a Boundary Integral Equation with the Generalized Neumann Kernel , 2009, SIAM J. Sci. Comput..

[11]  Prem K. Kythe,et al.  Computational Conformal Mapping , 1998 .

[12]  K. Atkinson,et al.  A survey of numerical methods for the solution of Fredholm integral equations of the second kind , 1977 .

[13]  On the approximate conformal mapping of multiply connected domains , 1979 .

[14]  Mohamed M. S. Nasser,et al.  The Riemann-Hilbert problem and the generalized Neumann kernel on multiply connected regions , 2008 .

[15]  A. H. Murid,et al.  NUMERICAL EXPERIMENT ON CONFORMAL MAPPING OF DOUBLY CONNECTED REGIONS ONTO A DISK WITH A SLIT , 2009 .

[16]  Darren Crowdy,et al.  Conformal Mappings between Canonical Multiply Connected Domains , 2006 .

[17]  Darren Crowdy,et al.  Computing the Schottky-Klein Prime Function on the Schottky Double of Planar Domains , 2007 .

[18]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[19]  Kaname Amano,et al.  Numerical conformal mappings of bounded multiply connected domains by the charge simulation method , 2003 .

[20]  Edward B. Saff,et al.  Computational Methods and Function Theory 1997: Proceedings of the Third CMFT Conference , 1999 .

[21]  G. Symm Conformal mapping of doubly-connected domains , 1969 .

[22]  Lothar Reichel,et al.  A fast method for solving certain integral equations of the first kind with application to conforma mapping , 1986 .

[23]  Edmund Taylor Whittaker,et al.  A Course of Modern Analysis , 2021 .

[24]  A. H. Murid,et al.  An Integral Equation Method for Conformal Mapping of Doubly Connected Regions , 1999 .

[25]  Kaname Amano,et al.  A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains , 1994 .