Comparison of Deep Learning Models for Cancer Metastases Detection: An Experimental Study

[1]  Nasir M. Rajpoot,et al.  Significance of Hyperparameter Optimization for Metastasis Detection in Breast Histology Images , 2018, COMPAY/OMIA@MICCAI.

[2]  Xin Wang,et al.  Invasive Cancer Detection Utilizing Compressed Convolutional Neural Network and Transfer Learning , 2018, MICCAI.

[3]  Max Welling,et al.  Rotation Equivariant CNNs for Digital Pathology , 2018, MICCAI.

[4]  Yi Li,et al.  Cancer Metastasis Detection With Neural Conditional Random Field , 2018, ArXiv.

[5]  Zhang Yi,et al.  Breast cancer cell nuclei classification in histopathology images using deep neural networks , 2018, International Journal of Computer Assisted Radiology and Surgery.

[6]  Andrew H. Beck,et al.  Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer , 2017, JAMA.

[7]  Joel H. Saltz,et al.  Sparse Autoencoder for Unsupervised Nucleus Detection and Representation in Histopathology Images , 2017, Pattern Recognit..

[8]  Aleksey Boyko,et al.  Detecting Cancer Metastases on Gigapixel Pathology Images , 2017, ArXiv.

[9]  Jianzhong Wu,et al.  Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images , 2016, IEEE Transactions on Medical Imaging.

[10]  Andrew Janowczyk,et al.  Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases , 2016, Journal of pathology informatics.

[11]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[12]  Dimitrios I. Fotiadis,et al.  Machine learning applications in cancer prognosis and prediction , 2014, Computational and structural biotechnology journal.

[13]  Jianzhong Wu,et al.  Stacked Sparse Autoencoder (SSAE) based framework for nuclei patch classification on breast cancer histopathology , 2014, 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI).

[14]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[15]  M. Kramer Nonlinear principal component analysis using autoassociative neural networks , 1991 .

[16]  A. Jemal,et al.  Breast Cancer Statistics , 2013 .