Restricting the Solubility of Polysulfides in Li‐S Batteries Via Electrolyte Salt Selection

Dr. J. Chen, Dr. K. S. Han, Dr. W. A. Henderson, Dr. M. Vijayakumar, Dr. H. Pan, Dr. J. Xiao, Dr. K. T. Muller, Dr. Y. Shao, Dr. J. Liu Joint Center for Energy Storage Research (JCESR) Pacifi c Northwest National Laboratory Richland , WA 99352 , USA E-mail: jun.liu@pnnl.gov Dr. K. C. Lau, Dr. T. Dzwiniel, Dr. L. A. Curtiss Joint Center for Energy Storage Research (JCESR) Argonne National Laboratory Argonne , IL 60439 , USA

[1]  Jens Tübke,et al.  Lithium–Sulfur Cells: The Gap between the State‐of‐the‐Art and the Requirements for High Energy Battery Cells , 2015 .

[2]  Jun Liu,et al.  On the Way Toward Understanding Solution Chemistry of Lithium Polysulfides for High Energy Li–S Redox Flow Batteries , 2015 .

[3]  L. Nazar,et al.  Radical or Not Radical: Revisiting Lithium–Sulfur Electrochemistry in Nonaqueous Electrolytes , 2015 .

[4]  Michael A. Pope,et al.  Structural Design of Cathodes for Li‐S Batteries , 2015 .

[5]  Yuyan Shao,et al.  Molecular-confinement of polysulfides within mesoscale electrodes for the practical application of lithium sulfur batteries , 2015 .

[6]  H. Althues,et al.  A lithium-Sulfur full cell with ultralong cycle life: influence of cathode structure and polysulfide additive , 2015 .

[7]  M. Oschatz,et al.  ZnO Hard Templating for Synthesis of Hierarchical Porous Carbons with Tailored Porosity and High Performance in Lithium‐Sulfur Battery , 2015 .

[8]  Jianming Zheng,et al.  Direct Observation of Sulfur Radicals as Reaction Media in Lithium Sulfur Batteries , 2015 .

[9]  Zhaolin Liu,et al.  Key parameters in design of lithium sulfur batteries , 2014 .

[10]  G. R. Li,et al.  A LiFSI-LiTFSI binary-salt electrolyte to achieve high capacity and cycle stability for a Li-S battery. , 2014, Chemical communications.

[11]  Yi Cui,et al.  Strong sulfur binding with conducting Magnéli-phase Ti(n)O2(n-1) nanomaterials for improving lithium-sulfur batteries. , 2014, Nano letters.

[12]  Zhichuan J. Xu,et al.  Encapsulating MWNTs into Hollow Porous Carbon Nanotubes: A Tube‐in‐Tube Carbon Nanostructure for High‐Performance Lithium‐Sulfur Batteries , 2014, Advanced materials.

[13]  Jun Liu,et al.  Molecular structure and stability of dissolved lithium polysulfide species. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Ji‐Guang Zhang,et al.  Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries. , 2014, Nano letters.

[15]  Shizhao Xiong,et al.  Characterization of solid electrolyte interphase on lithium electrodes cycled in ether-based electrolytes for lithium batteries , 2014 .

[16]  Donghai Wang,et al.  Nitrogen‐Doped Mesoporous Carbon Promoted Chemical Adsorption of Sulfur and Fabrication of High‐Areal‐Capacity Sulfur Cathode with Exceptional Cycling Stability for Lithium‐Sulfur Batteries , 2014 .

[17]  Jianming Zheng,et al.  Manipulating surface reactions in lithium–sulphur batteries using hybrid anode structures , 2014, Nature Communications.

[18]  Yang‐Kook Sun,et al.  Progress in lithium-sulfur batteries: the effective role of a polysulfide-added electrolyte as buffer to prevent cathode dissolution. , 2013, ChemSusChem.

[19]  Xiaogang Han,et al.  Reactivation of dissolved polysulfides in Li–S batteries based on atomic layer deposition of Al2O3 in nanoporous carbon cloth , 2013 .

[20]  Li Li,et al.  Polyethylene-glycol-doped polypyrrole increases the rate performance of the cathode in lithium-sulfur batteries. , 2013, ChemSusChem.

[21]  Ilias Belharouak,et al.  Role of Polysulfides in Self‐Healing Lithium–Sulfur Batteries , 2013 .

[22]  Nancy J. Dudney,et al.  Phosphorous Pentasulfide as a Novel Additive for High‐Performance Lithium‐Sulfur Batteries , 2013 .

[23]  Michel Armand,et al.  A new class of Solvent-in-Salt electrolyte for high-energy rechargeable metallic lithium batteries , 2013, Nature Communications.

[24]  W. Cho,et al.  Polysulfide dissolution control: the common ion effect. , 2013, Chemical communications.

[25]  Lixia Yuan,et al.  Porous carbon nanotubes improved sulfur composite cathode for lithium-sulfur battery , 2013, Journal of Solid State Electrochemistry.

[26]  Jianming Zheng,et al.  How to Obtain Reproducible Results for Lithium Sulfur Batteries , 2013 .

[27]  Kevin A. Hays,et al.  Revisit Carbon/Sulfur Composite for Li-S Batteries , 2013 .

[28]  Shengbo Zhang,et al.  Improved Cyclability of Liquid Electrolyte Lithium/Sulfur Batteries by Optimizing Electrolyte/Sulfur Ratio , 2012 .

[29]  Daniel M. Seo,et al.  Li+ cation coordination by acetonitrile—insights from crystallography , 2012 .

[30]  J. Tübke,et al.  High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. , 2012, Chemical communications.

[31]  Jun Liu,et al.  A Soft Approach to Encapsulate Sulfur: Polyaniline Nanotubes for Lithium‐Sulfur Batteries with Long Cycle Life , 2012, Advanced materials.

[32]  Jie Gao,et al.  Effects of Liquid Electrolytes on the Charge–Discharge Performance of Rechargeable Lithium/Sulfur Batteries: Electrochemical and in-Situ X-ray Absorption Spectroscopic Studies , 2011 .

[33]  Gérard Férey,et al.  Cathode composites for Li-S batteries via the use of oxygenated porous architectures. , 2011, Journal of the American Chemical Society.

[34]  C. Liang,et al.  Hierarchically Structured Sulfur/Carbon Nanocomposite Material for High-Energy Lithium Battery , 2009 .

[35]  L. Nazar,et al.  A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. , 2009, Nature materials.

[36]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[37]  Yuriy V. Mikhaylik,et al.  Polysulfide Shuttle Study in the Li/S Battery System , 2004 .

[38]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[39]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[40]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[41]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.