Generalized hierarchical bases: a Wavelet‐Ritz‐Galerkin framework for Lagrangian FEM
暂无分享,去创建一个
Kevin Amaratunga | K. Amaratunga | J. Castrillón-Candás | S. D'Heedene | J. Castrillón‐Candás | S. D'Heedene
[1] H. Yserentant. On the multi-level splitting of finite element spaces , 1986 .
[2] Truong Q. Nguyen,et al. Wavelets and filter banks , 1996 .
[3] Gilbert Strang,et al. Finite element multiwavelets , 1994, Optics & Photonics.
[4] Stéphane Mallat,et al. A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..
[5] W. Sweldens. The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .
[6] Kevin Amaratunga,et al. A combined approach for goal‐oriented error estimation and adaptivity using operator‐customized finite element wavelets , 2006 .
[7] Harry Yserentant,et al. Hierarchical bases , 1992 .
[8] Wolfgang Dahmen,et al. Local Decomposition of Refinable Spaces and Wavelets , 1996 .
[9] Kevin Amaratunga,et al. Surface wavelets: a multiresolution signal processing tool for 3D computational modelling , 2001 .
[10] Wolfgang Dahmen,et al. Multiscale Methods for Pseudo-Differential Equations on Smooth Closed Manifolds , 1994 .
[11] Kevin Amaratunga,et al. Wavelet-Galerkin solution of boundary value problems , 1997 .
[12] Eitan Grinspun,et al. Natural hierarchical refinement for finite element methods , 2003 .
[13] Kevin Amaratunga,et al. Spatially Adapted Multiwavelets and Sparse Representation of Integral Equations on General Geometries , 2002, SIAM J. Sci. Comput..
[14] K. Amaratunga,et al. Multiresolution modeling with operator-customized wavelets derived from finite elements , 2006 .
[15] Wolfgang Dahmen,et al. Wavelets in Numerical Analysis , 2005 .
[16] I. Weinreich,et al. Wavelet-Galerkin methods: An adapted biorthogonal wavelet basis , 1993 .
[17] Kevin Amaratunga,et al. WAVELET BASED GREEN'S FUNCTION APPROACH TO 2D PDEs , 1993 .
[18] I. Daubechies. Orthonormal bases of compactly supported wavelets , 1988 .
[19] W. Sweldens,et al. Wavelet multiresolution analyses adapted for the fast solution of boundary value ordinary differential equations , 1993 .
[20] Wolfgang Dahmen,et al. Element-by-Element Construction of Wavelets Satisfying Stability and Moment Conditions , 1999, SIAM J. Numer. Anal..