Inductively coupled plasma chemical vapour deposited AlOx/SiNy layer stacks for applications in high-efficiency industrial-type silicon solar cells

[1]  Thorsten Dullweber,et al.  Impurity-related limitations of next-generation industrial silicon solar cells , 2013, 2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2.

[2]  T. Dullweber,et al.  ICP-PECVD Production Tool for Industrial AlOx and Si-Based Passivation Layers , 2012 .

[3]  S. Peters,et al.  High-Efficiency Industrial-Type PERC Solar Cells Applying ICP AlOx as Rear Passivation Layer , 2012 .

[4]  R. Brendel,et al.  Towards 20% efficient large‐area screen‐printed rear‐passivated silicon solar cells , 2012 .

[5]  G. Dingemans,et al.  Plasma-enhanced Chemical Vapor Deposition of Aluminum Oxide Using Ultrashort Precursor Injection Pulses , 2012 .

[6]  Wmm Erwin Kessels,et al.  Status and prospects of Al2O3-based surface passivation schemes for silicon solar cells , 2012 .

[7]  E. Granneman,et al.  High-Throughput Solar Cell Passivation on In-Line Levitrack ALD Al2O3 System - Demonstration of Process Performance , 2011 .

[8]  R. Brendel,et al.  18.9 %-Efficient Screen-Printed Solar Cells Applying a Print-on-Print Process , 2011 .

[9]  R. Mertens,et al.  On the blistering of Al2O3 passivation layers for Si solar cells , 2011 .

[10]  K. A. Münzer,et al.  Development and Implementation of 19 % Rear Passivation and Local Contact Centaurus Technology , 2011 .

[11]  R. Brendel,et al.  Evaluation of Series Resistance Losses in Screen-Printed Solar Cells With Local Rear Contacts , 2011, IEEE Journal of Photovoltaics.

[12]  K. Bothe,et al.  Contact Formation and Recombination at Screen-Printed Local Aluminum-Alloyed Silicon Solar Cell Base Contacts , 2011, IEEE Transactions on Electron Devices.

[13]  R. Brendel,et al.  Electronic and chemical properties of the c-Si/Al2O3 interface , 2011 .

[14]  Andrew B. Li,et al.  Surface Passivation of Crystalline Silicon by Sputtered Aluminium Oxide , 2011 .

[15]  K. Bothe,et al.  19.4%‐efficient large‐area fully screen‐printed silicon solar cells , 2011 .

[16]  E. Erben,et al.  High Productive Solar Cell Passivation on Roth&Rau MAiA® MW-PECVD Inline Machine – A Comparison of Al2O3 , SiO2 and SiNx-H Process Conditions and Performance , 2010 .

[17]  K. McIntosh,et al.  Effect of a post-deposition anneal on Al2O3/Si interface properties , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[18]  B. Cord,et al.  SINGULAR – A Novel Static Inline PECVD-Deposition Concept for Silicon-Cell Production , 2009 .

[19]  R. Preu,et al.  Very low surface recombination velocity on p-type c-Si by high-rate plasma-deposited aluminum oxide , 2009 .

[20]  Jan Benick,et al.  Thermal stability of the Al2O3 passivation on p‐type silicon surfaces for solar cell applications , 2009 .

[21]  Wmm Erwin Kessels,et al.  On the c-Si surface passivation mechanism by the negative-charge-dielectric Al2O3 , 2008 .

[22]  Wmm Erwin Kessels,et al.  Surface passivation of high‐efficiency silicon solar cells by atomic‐layer‐deposited Al2O3 , 2008 .

[23]  Jan Benick,et al.  High efficiency n-type Si solar cells on Al2O3-passivated boron emitters , 2008 .

[24]  Karsten Bothe,et al.  Deactivation of the boron–oxygen recombination center in silicon by illumination at elevated temperature , 2008 .

[25]  Harold Dekkers,et al.  Very low surface recombination velocities on p-type silicon wafers passivated with a dielectric with fixed negative charge , 2006 .

[26]  Wmm Erwin Kessels,et al.  Ultralow surface recombination of c-Si substrates passivated by plasma-assisted atomic layer deposited Al2O3 , 2006 .

[27]  Stephen J. Pearton,et al.  Low Temperature Silicon Nitride and Silicon Dioxide Film Processing by Inductively Coupled Plasma Chemical Vapor Deposition , 2000 .

[28]  J. Yota,et al.  A comparative study on inductively-coupled plasma high-density plasma, plasma-enhanced, and low pressure chemical vapor deposition silicon nitride films , 2000 .

[29]  S. Han,et al.  Preparation of a-SiNx thin film with low hydrogen content by inductively coupled plasma enhanced chemical vapor deposition , 1998 .

[30]  Osamu Takai,et al.  Spectroscopic studies on preparation of silicon oxide films by PECVD using organosilicon compounds , 1996 .

[31]  K. Drescher,et al.  Characterization of plasma in an inductively coupled high-dense plasma source , 1995 .

[32]  R. Hezel,et al.  Low‐Temperature Surface Passivation of Silicon for Solar Cells , 1989 .

[33]  Jens Müller,et al.  Analysis and optimization of the bulk and rear recombination of screen-printed PERC solar cells , 2012 .

[34]  R. Brendel,et al.  Comparison of ICP-AlOx and ALD-Al2O3 layers for the rear surface passivation of c-Si Solar cells , 2012 .

[35]  Andreas Teppe,et al.  Technical Performance and Industrial Implementation in Favour of Centaurus Technology , 2012 .

[36]  R. Brendel,et al.  High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells , 2011 .

[37]  R. Brendel,et al.  Comparison of the thermal stability of single Al2O3 layers and Al2O3/SiNx stacks for the surface passiviation of silicon , 2011 .

[38]  G. Hahn,et al.  Avoiding boron-oxygen related degradation in highly boron doped Cz silicon , 2006 .