A class of triangular splitting methods for saddle point problems
暂无分享,去创建一个
[1] Bing Zheng,et al. On semi-convergence of parameterized Uzawa methods for singular saddle point problems☆ , 2009 .
[2] Michael K. Ng,et al. New preconditioners for saddle point problems , 2006, Appl. Math. Comput..
[3] Guo-Feng Zhang,et al. Preconditioned AHSS iteration method for singular saddle point problems , 2013, Numerical Algorithms.
[4] Jinyun Yuan,et al. Block SOR methods for rank-deficient least-squares problems , 1998 .
[5] L. Rudin,et al. Nonlinear total variation based noise removal algorithms , 1992 .
[6] Howard C. Elman,et al. Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow , 2007, TOMS.
[7] J. Y. Yuan,et al. Preconditioned conjugate gradient method for rank deficient least-squares problems , 1999, Int. J. Comput. Math..
[8] Howard C. Elman,et al. Preconditioning for the Steady-State Navier-Stokes Equations with Low Viscosity , 1999, SIAM J. Sci. Comput..
[9] Gene H. Golub,et al. Hermitian and Skew-Hermitian Splitting Methods for Non-Hermitian Positive Definite Linear Systems , 2002, SIAM J. Matrix Anal. Appl..
[10] Andrea Toselli,et al. Domain decomposition methods : algorithms and theory , 2005 .
[11] Jun Zou,et al. Two new variants of nonlinear inexact Uzawa algorithms for saddle-point problems , 2002, Numerische Mathematik.
[12] Stephen J. Wright. Stability of Augmented System Factorizations in Interior-Point Methods , 1997, SIAM J. Matrix Anal. Appl..
[13] Nira Dyn,et al. The numerical solution of equality constrained quadratic programming problems , 1983 .
[14] Gene H. Golub,et al. Convergence properties of preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite matrices , 2007, Math. Comput..
[15] Michele Benzi,et al. Existence and uniqueness of splittings for stationary iterative methods with applications to alternating methods , 1997 .
[16] Qingqing Zheng,et al. A class of accelerated Uzawa algorithms for saddle point problems , 2014, Appl. Math. Comput..
[17] M. Fortin,et al. Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .
[18] Gene H. Golub,et al. A Nonlinear Primal-Dual Method for Total Variation-Based Image Restoration , 1999, SIAM J. Sci. Comput..
[19] Wen Li,et al. The alternating-direction iterative method for saddle point problems , 2010, Appl. Math. Comput..
[20] Ting-Zhu Huang,et al. A modified SSOR iterative method for augmented systems , 2009 .
[21] Andrew J. Wathen,et al. Performance and analysis of saddle point preconditioners for the discrete steady-state Navier-Stokes equations , 2002, Numerische Mathematik.
[22] Ting-Zhu Huang,et al. Spectral properties of the preconditioned AHSS iteration method for generalized saddle point problems , 2010 .
[23] Wen Li,et al. The generalized HSS method for solving singular linear systems , 2012, J. Comput. Appl. Math..
[24] Gene H. Golub,et al. Preconditioned Hermitian and skew-Hermitian splitting methods for non-Hermitian positive semidefinite linear systems , 2004, Numerische Mathematik.
[25] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[26] Beresford N. Parlett,et al. On generalized successive overrelaxation methods for augmented linear systems , 2005, Numerische Mathematik.
[27] Yimin Wei,et al. Semi-convergence analysis of Uzawa methods for singular saddle point problems , 2014, J. Comput. Appl. Math..
[28] Z. Bai,et al. Restrictively preconditioned conjugate gradient methods for systems of linear equations , 2003 .
[29] Apostol T. Vassilev,et al. Analysis of the Inexact Uzawa Algorithm for Saddle Point Problems , 1997 .
[30] Zeng-Qi Wang,et al. Restrictive preconditioners for conjugate gradient methods for symmetric positive definite linear systems , 2006 .
[31] Zeng-Qi Wang,et al. On parameterized inexact Uzawa methods for generalized saddle point problems , 2008 .
[32] Zhong-Zhi Bai,et al. On semi-convergence of Hermitian and skew-Hermitian splitting methods for singular linear systems , 2010, Computing.
[33] Gene H. Golub,et al. Numerical solution of saddle point problems , 2005, Acta Numerica.
[34] Nicholas I. M. Gould,et al. Constraint Preconditioning for Indefinite Linear Systems , 2000, SIAM J. Matrix Anal. Appl..
[35] A. Wathen,et al. Minimum residual methods for augmented systems , 1998 .
[36] Xiaoqi Yang,et al. Lagrange-type Functions in Constrained Non-Convex Optimization , 2003 .
[37] H. H. Rachford,et al. The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .
[38] Ahmed H. Sameh,et al. An Efficient Iterative Method for the Generalized Stokes Problem , 1998, SIAM J. Sci. Comput..
[39] Hai-long Shen,et al. THE GENERALIZED SOR-LIKE METHOD FOR THE AUGMENTED SYSTEMS , 2006 .
[40] W. Jason,et al. アルゴリズム869:ODRPACK95:範囲制約のある重み付け直交距離回帰コード , 2007 .
[41] Zhong-Zhi Bai,et al. Optimal parameters in the HSS‐like methods for saddle‐point problems , 2009, Numer. Linear Algebra Appl..
[42] Eric de Sturler,et al. Block-Diagonal and Constraint Preconditioners for Nonsymmetric Indefinite Linear Systems. Part I: Theory , 2005, SIAM J. Sci. Comput..
[43] J. J. Douglas. Alternating direction methods for three space variables , 1962 .
[44] X. Wu,et al. Conjugate Gradient Method for Rank Deficient Saddle Point Problems , 2004, Numerical Algorithms.
[45] Alfredo N. Iusem,et al. Preconditioned conjugate gradient method for generalized least squares problems , 1996 .
[46] Philip E. Gill,et al. Practical optimization , 1981 .
[47] Gene H. Golub,et al. SOR-like Methods for Augmented Systems , 2001 .
[48] Gene H. Golub,et al. Accelerated Hermitian and skew-Hermitian splitting iteration methods for saddle-point problems , 2007 .
[49] Qingqing Zheng,et al. On normal and skew-Hermitian splitting iteration methods for large sparse continuous Sylvester equations , 2014, J. Comput. Appl. Math..
[50] Nicholas I. M. Gould,et al. On the Solution of Equality Constrained Quadratic Programming Problems Arising in Optimization , 2001, SIAM J. Sci. Comput..
[51] M. T. Darvishi,et al. Symmetric SOR method for augmented systems , 2006, Appl. Math. Comput..
[52] Qingqing Zheng,et al. A new SOR-Like method for the saddle point problems , 2014, Appl. Math. Comput..
[53] Junfeng Lu,et al. A Modified Nonlinear Inexact Uzawa Algorithm with a Variable Relaxation Parameter for the Stabilized Saddle Point Problem , 2010, SIAM J. Matrix Anal. Appl..
[54] Zhong-Zhi Bai,et al. Structured preconditioners for nonsingular matrices of block two-by-two structures , 2005, Math. Comput..
[55] Howard C. Elman,et al. Fast Nonsymmetric Iterations and Preconditioning for Navier-Stokes Equations , 1996, SIAM J. Sci. Comput..
[56] G. Golub,et al. Inexact and preconditioned Uzawa algorithms for saddle point problems , 1994 .