The LINC-NIRVANA fringe and flexure tracker control system

We present the latest status of the control system of the LN (LINC-NIRVANA) FFTS (Fringe and Flexure Tracker System) for the LBT. The software concept integrates the sensor data and control of the various subsystems and provides the interaction with the whole LN instrument. Varying conditions and multiple configurations for observations imply a flexible interconnection of the control loops for the hardware manipulators with respect to the time-critical data analysis of the fringe detection. In this contribution details of the implementation of the algorithms on a real-time Linux PC are given. By considering the results from simulations of the system dynamics, lab experiments, atmospheric simulations, and telescope characterization the optimal parameter setup for an observation can be chosen and basic techniques for adaption to changing conditions can be derived.

[1]  Thomas Bertram,et al.  The LINC-NIRVANA fringe and flexure tracker: Linux real-time solutions , 2006, SPIE Astronomical Telescopes + Instrumentation.

[2]  T. Bertram,et al.  Multiple guide star acquisition software for LINC-NIRVANA , 2012, Other Conferences.

[3]  J. Trowitzsch,et al.  Beam control for LINC-NIRVANA: from the binocular entrance pupil to the combined focal plane , 2012, Other Conferences.

[4]  Tom Herbst,et al.  The LINC-NIRVANA fringe and flexure tracking system , 2008, Astronomical Telescopes + Instrumentation.

[5]  Jan Trowitzsch,et al.  Software-centric view on the LINC-NIRVANA beam control concept , 2012, Other Conferences.

[6]  A. Eckart,et al.  Functional and performance tests of the fringe and flexure tracking system for LINC-NIRVANA , 2012, Other Conferences.

[7]  Thomas Bertram,et al.  The LINC-NIRVANA Fringe and Flexure Tracker: testing piston control performance , 2008, Astronomical Telescopes + Instrumentation.

[8]  Roberto Ragazzoni,et al.  The LINC-NIRVANA interferometric imager for the Large Binocular Telescope , 2004, SPIE Astronomical Telescopes + Instrumentation.

[9]  Steffen Rost LINC-NIRVANA Piston Control and Near-Infrared Polarization Images of the Orion Proplyds , 2008 .

[10]  Roberto Ragazzoni,et al.  LINC-NIRVANA: assembly, integration, and verification update , 2012, Other Conferences.

[11]  Thomas Bertram,et al.  The LINC-NIRVANA fringe and flexure tracker: control design overview , 2010, Astronomical Telescopes + Instrumentation.

[12]  J.-U. Pott,et al.  Glass fiber reinforced plastics within the fringe and flexure tracker of LINC-NIRVANA , 2012, Other Conferences.

[13]  R. Mark Wagner,et al.  An overview of instrumentation for the Large Binocular Telescope , 2003, SPIE Astronomical Telescopes + Instrumentation.

[14]  J. Trowitzsch,et al.  Intelligent vibration control of ELTs and large AO hardware , 2012, Other Conferences.

[15]  Roberto Ragazzoni,et al.  Imaging beyond the fringe: an update on the LINC-NIRVANA Fizeau interferometer for the LBT , 2010, Astronomical Telescopes + Instrumentation.

[16]  T. J. McMahon,et al.  OVMS: the optical path difference and vibration monitoring system for the LBT and its interferometers , 2010, Astronomical Telescopes + Instrumentation.

[17]  Thomas Bertram,et al.  The LINC-NIRVANA fringe and flexure tracker: piston control strategies , 2006, SPIE Astronomical Telescopes + Instrumentation.

[18]  Thomas Bertram,et al.  Fringe detection and piston variability in LINC-NIRVANA , 2010, Astronomical Telescopes + Instrumentation.

[19]  Thomas Bertram,et al.  Cophasing LINC-NIRVANA and molecular gas in low-luminosity QSO host and cluster galaxies , 2007 .

[20]  Jörg-Uwe Pott,et al.  LINC-NIRVANA piston control elements , 2010, Astronomical Telescopes + Instrumentation.