Generating Discrete Planes with Substitutions

Given a finite set S of unimodular Pisot substitutions, we provide a method for characterizing the infinite sequences over S that allow to generate a full discrete plane when, starting from a finite seed, we iterate the multidimensional dual substitutions associated with S. We apply our results to study the substitutions associated with the Brun multidimensional continued fraction algorithm.

[1]  Boris Solomyak,et al.  Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.

[2]  P. Arnoux,et al.  Pisot substitutions and Rauzy fractals , 2001 .

[3]  Makoto Ohtsuki,et al.  Parallelogram Tilings and Jacobi-Perron Algorithm , 1994 .

[4]  Arnaldo Nogueira,et al.  Multidimensional Continued Fractions. By Fritz Schweiger. Oxford Science Publications , 2002, Ergodic Theory and Dynamical Systems.

[5]  E. Dubois,et al.  Une application des nombres de Pisot à l'algorithme de Jacobi-Perron , 1984 .

[6]  H. Rao,et al.  ATOMIC SURFACES, TILINGS AND COINCIDENCE I. IRREDUCIBLE CASE , 2005 .

[7]  Jörg M. Thuswaldner,et al.  Topological Properties of Rauzy Fractals , 2010 .

[8]  Valérie Berthé,et al.  Substitutions, Rauzy fractals and tilings , 2010 .

[9]  Valérie Berthé,et al.  Tilings associated with beta-numeration and substitutions. , 2005 .

[10]  Thomas Fernique,et al.  Generation and recognition of digital planes using multi-dimensional continued fractions , 2008, Pattern Recognit..

[11]  C. Mauduit,et al.  Substitutions in dynamics, arithmetics, and combinatorics , 2002 .

[12]  Fernique Thomas,et al.  MULTIDIMENSIONAL STURMIAN SEQUENCES AND GENERALIZED SUBSTITUTIONS , 2006 .

[13]  H. Rao,et al.  Atomic surfaces, tilings and coincidences II. Reducible case , 2007 .

[14]  Valérie Berthé,et al.  Substitutive Arnoux-Rauzy sequences have pure discrete spectrum , 2011, ArXiv.

[15]  Fritz Schweiger,et al.  Multidimensional continued fractions , 2000 .

[16]  G. Rauzy Nombres algébriques et substitutions , 1982 .

[17]  Xavier Provençal,et al.  Critical Connectedness of Thin Arithmetical Discrete Planes , 2013, DGCI.

[18]  Valérie Berthé,et al.  Connectedness of fractals associated with Arnoux-Rauzy substitutions , 2011, RAIRO Theor. Informatics Appl..