Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host

High-quality crystals of monoclinic KLu(WO4)2, shortly KLuW, were grown with sizes sufficient for its characterization and substantial progress was achieved in the field of spectroscopy and laser operation with Yband Tm-doping. We review the growth methodology for bulk KLuW and epitaxial layers, its structural, thermo-mechanical, and optical properties, the Yb and Tm spectroscopy, and present laser results obtained in several operational regimes both with Ti:sapphire and direct diode laser pumping using InGaAs and AlGaAs diodes near 980 and 800 nm, respectively. The slope efficiencies with respect to the absorbed pump power achieved with continuous-wave (CW) bulk and epitaxial Yb:KLuW lasers under Ti:sapphire laser pumping were ≈ 57 and ≈ 66%, respectively. Output powers as high as 3.28 W were obtained with diode pumping in a simple two-mirror cavity where the slope efficiency with respect to the incident pump power reached ≈ 78%. Passively Q-switched laser operation of bulk Yb:KLuW was realized with a Cr:YAG saturable absorber resulting in oscillation at ≈ 1031 nm with a repetition rate of 28 kHz and simultaneous Raman conversion to ≈ 1138 nm with maximum energies of 32.4 and 14.4 μJ, respectively. The corresponding pulse durations were 1.41 and 0.71 ns. Passive mode-locking by a semiconductor saturable absorber mirror (SESAM) produced bandwidth-limited pulses with duration of 81 fs (1046 nm, 95 MHz) and 114 fs (1030 nm, 101 MHz) for bulk and epitaxial Projection of the KLu(WO4)2 structure parallel to the b crystallographic direction [010]. Yb:KLuW lasers, respectively. Slope efficiency as high as 69% with respect to the absorbed power and an output power of 4 W at 1950 nm were achieved with a diodepumped Tm:KLuW laser. The slope efficiency reached with an epitaxial Tm:KLuW laser under Ti:sapphire laser pumping was 64 %. The tunability achieved with bulk and epitaxial Tm:KLuW lasers extended from 1800 to 1987 nm and from 1894 to 2039 nm, respectively. c © 2007 by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Growth and properties of KLu(WO4)2, and novel ytterbium and thulium lasers based on this monoclinic crystalline host Valentin Petrov 1, , Maria Cinta Pujol 2, Xavier Mateos 1, Òscar Silvestre 2, Simon Rivier 1, Magdalena Aguiló 2, Rosa Maria Solé 2, Junhai Liu 1, Uwe Griebner 1, and Francesc Dı́az 2 1 Max-Born-Institute for Nonlinear Optics and Ultrafast Spectroscopy, Max-Born-Str. 2A, 12489 Berlin, Germany 2 Universitat Rovira i Virgili, Campus Sescelades, c/ Marcel·lı́ Domingo, s/n, 43007 Tarragona, Spain Received: 10 April 2007, Accepted: 13 April 2007 Published online: 3 May 2007

[1]  T. S. P. S.,et al.  GROWTH , 1924, Nature.

[2]  W. G. Perdok,et al.  On the relations between structure and morphology of crystals. I , 1955 .

[3]  P. Klevtsov,et al.  Polymorphism of the double molybdates and tungstates of mono- and trivalent metals with the composition M+R3+(EO4)2 , 1977 .

[4]  A. G. Petrosyan,et al.  Two-micron stimulated emission by crystals with Ho3+ ions based on the transition 5I7 --> 5I8 , 1981 .

[5]  A. A. Pavlyuk,et al.  New quasi-cw pyrotechnically pumped crystal lasers , 1983 .

[6]  A. A. Pavlyuk,et al.  Kinetics of the luminescence of the Ho3+ ion KA‴ (WO4)2 crystals , 1986 .

[7]  Jerzy Hanuza,et al.  Polarized infra-red and Raman spectra of monoclinic α-KLn(WO4)2 single crystals (Ln = Sm—Lu, Y) , 1987 .

[8]  Walter Koechner,et al.  Efficient single-mode cw lasers based on monoclinic double potassium-(rare earth) tungstenate crystals containing Nd3+ ions with semiconductor-laser pumping , 1992 .

[9]  Ferenc Krausz,et al.  Femtosecond solid-state lasers , 1992 .

[10]  Lloyd L. Chase,et al.  Evaluation of absorption and emission properties of Yb/sup 3+/ doped crystals for laser applications , 1993 .

[11]  A. Lagatsky,et al.  Pulsed laser operation of Y b-dope d KY(WO(4))(2) and KGd(WO(4))(2). , 1997, Optics letters.

[12]  Georges Boulon,et al.  Monoclinic Tungstates KDy(WO 4) 2 and KLu(WO 4) 2 - New χ( 3)-Active Crystals for Laser Raman Shifters , 1998 .

[13]  A. Demidovich,et al.  Effect of random distribution and molecular interactions on optical properties of Er3+ dopant in KY(WO4)2 and Ho3+ in KYb(WO4)2 , 1998 .

[14]  Rüdiger Paschotta,et al.  Q-switching stability limits of continuous-wave passive mode locking , 1999 .

[15]  A. Lagatsky,et al.  Diode-pumped CW lasing of Yb:KYW and Yb:KGW , 1999 .

[16]  D. Shepherd,et al.  Double-clad structures and proximity coupling for diode-bar-pumped planar waveguide lasers , 2000, IEEE Journal of Quantum Electronics.

[17]  A. Lagatsky,et al.  Passive Q switching and self-frequency Raman conversion in a diode-pumped Yb:KGd(WO(4))(2) laser. , 2000, Optics letters.

[18]  J. Gavaldà,et al.  Linear Thermal Expansion Tensor in KRE(WO4)2 (RE=Gd, Y, Er, Yb) Monoclinic Crystals , 2001 .

[19]  G. Mourou,et al.  Diode-pumped Kerr-lens mode-locked Yb:KY(WO(4))(2) laser. , 2001, Optics letters.

[20]  U. Griebner,et al.  Growth, optical characterization, and laser operation of a stoichiometric crystal KYb(WO 4 ) 2 , 2002 .

[21]  Valentin Petrov,et al.  Passively mode-locked Yb:KYWlaser pumped by a tapered diode laser. , 2002, Optics express.

[22]  Xiumei Han,et al.  Spectral parameters of Nd3+ ion in Nd:KLa(WO4)2 crystal , 2002 .

[23]  F. Güell,et al.  Crystal growth and spectroscopic characterization of Tm-doped KYb„WO4...2 single crystals , 2002 .

[24]  Xavier Mateos,et al.  Structure, crystal growth and physical anisotropy of KYb(WO4)2, a new laser matrix , 2002 .

[25]  A. Kaminskii,et al.  Polarized infrared and Raman spectra of KGd(WO4)2 and their interpretation based on normal coordinate analysis , 2002 .

[26]  A. Demidovich,et al.  Laser operation and Raman self-frequency conversion in Yb:KYW microchip laser , 2002 .

[27]  M. Mond,et al.  Efficient tunable laser operation of diode- pumped Yb,Tm:KY(WO4)2 around 1.9 μm , 2002 .

[28]  V. G. Shcherbitsky,et al.  Efficient self-frequency Raman conversion in a passively Q-switched diode-pumped Yb:KGd(WO4)2 laser , 2003 .

[29]  U. Griebner,et al.  Continuous-Wave Laser Oscillation of Yb^3+ in Monoclinic KLu( WO_4)_2 , 2004 .

[30]  F. Güell,et al.  1.48 and 1.84 μm thulium emissions in monoclinic KGd(WO4)2 single crystals , 2004 .

[31]  K. Petermann,et al.  Optical properties of epitaxial YAG:Yb films , 2004 .

[32]  Joachim Hein,et al.  100-fs diode-pumped Yb:KGW mode-locked laser , 2004 .

[33]  Kunpeng Wang,et al.  Predicted and real habits of flux grown potassium lutetium tungstate single crystals , 2005 .

[34]  Xavier Mateos,et al.  Mode-locked laser operation of epitaxially grown Yb:Klu(WO4)2 composites. , 2005, Optics letters.

[35]  G. Erbert,et al.  Passively mode-locked Yb:KLu(WO4)2 oscillators. , 2005, Optics express.

[36]  Kunpeng Wang,et al.  Anisotropic thermal expansion of monoclinic potassium lutetium tungstate single crystals , 2005 .

[37]  Valentin Petrov,et al.  Laser Operation of Epitaxially Grown Yb : KLu ( WO 4 ) 2 – KLu ( WO 4 ) 2 Composites With Monoclinic Crystalline Structure , 2005 .

[38]  V. E. Kisel,et al.  Laser performance of Tm:KY(WO4)2 crystal , 2005 .

[39]  Kunpeng Wang,et al.  Periodic transition of microcrystals on the host (110) face of KLu(WO4)2 crystals , 2005 .

[40]  Valentin Petrov,et al.  Efficient continuous-wave and Q-switched operation of a diode-pumped Yb:KLu(WO4)2 laser with self-Raman conversion. , 2005, Optics letters.

[41]  Adolf Giesen,et al.  Highly Yb-doped oxides for thin-disc lasers , 2005 .

[42]  TANGLi-Yong,et al.  Spectral Parameters of Nd^3+ Ion in Nd^3+:KLu(WO4)2 Crystal , 2005 .

[43]  Zongshu Shao,et al.  Growth and diode-pumped CW lasing of Nd:KLu(WO4)2 , 2005 .

[44]  Guofu Wang,et al.  Growth and spectral properties of Nd3+:KLu(WO4)2 crystal , 2005 .

[45]  Kunpeng Wang,et al.  Anisotropic thermal properties of monoclinic Yb:KLu(WO4)2 crystals , 2005 .

[46]  Xavier Mateos,et al.  Efficient 2- m Continuous-Wave Laser Oscillation of Tm :KLu(WO ) , 2006 .

[47]  V. Pasiskevicius,et al.  Laser performance and thermal lensing in high-power diode-pumped Yb:KGW with athermal orientation , 2006 .

[48]  Zongshu Shao,et al.  Spectral and luminescent properties of trivalent samarium ions in KLu(WO4)2 crystals , 2006 .

[49]  Minhua Jiang,et al.  Growth, properties and Raman shift laser in tungstate crystals , 2006 .

[50]  Xavier Mateos,et al.  Structural redetermination, thermal expansion and refractive indices of KLu(WO4)2 , 2006 .

[51]  Zongcheng Ling,et al.  Lattice vibration and thermal diffusion of Yb doped KLu(WO4)2 single crystal , 2006 .

[52]  Jing Li,et al.  Growth, optical and thermal properties of Yb, Tm:KLu(WO4)2 , 2006 .

[53]  M. Aguiló,et al.  Liquid-Phase Epitaxy Crystal Growth of Monoclinic KLu 1- x Yb x (WO 4 ) 2 /KLu(WO 4 ) 2 Layers , 2006 .

[54]  Xavier Mateos,et al.  Epitaxially grown Yb:KLu(WO4)2 composites for continuous-wave and mode-locked lasers in the 1 μm spectral range , 2006 .

[55]  王克明,et al.  Optical Waveguide Formed in Yb:KLu(WO4)2 Crystal by 6.0 MeV O^+ Implantation , 2006 .

[56]  Kunpeng Wang,et al.  Investigation of growth mechanisms of TSS-grown KLu(WO4)2 crystals by atomic force microscopy , 2006 .

[57]  X. Mateos,et al.  Efficient 2-$mu$m Continuous-Wave Laser Oscillation of Tm$^3 + $:KLu(WO$_4$)$_2$ , 2006, IEEE Journal of Quantum Electronics.

[58]  Kunpeng Wang,et al.  Growth and structure of monoclinic KLu(WO4)2 crystals , 2006 .

[59]  Xavier Mateos,et al.  Crystal growth, spectroscopic studies and laser operation of Yb3+-doped potassium lutetium tungstate , 2006 .

[60]  Valentin Petrov,et al.  Efficient diode-pumped cw Tm:KLu(WO4)2 laser , 2006, SPIE Defense + Commercial Sensing.

[61]  Fi Cristal Thulium doped monoclinic KLu(WO4)2 single crystals: growth and spectroscopy , 2007 .

[62]  Huai-jin Zhang,et al.  Optical and thermal properties of crystalline Tb: KLu(WO4)2 , 2007 .