Experimental evaluation of the efficiency of chitosan matrixes under conditions of modeling of bone defect in vivo (preliminary message)

Background. Despite the wide range of studies, the development of osteoplastic material, which has not only osteoconductive but also osteoinductive properties, remains an extremely topical issue in modern medical materials science. This work is devoted to experimental evaluation of the effectiveness of synthetic osteoplastic composite material based on chitosan and hydroxyapatite. Aim. This study aimed to determine the effects of spongy implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. % on early osteogenesis in the area of the through defect of the ileum. Materials and methods. The studied materials were sponge implants based on chitosan and its composite with hydroxyapatite nanoparticles in an amount of 50 wt. %. Comparison groups include those without implant placement and those with replacement with commercial Reprobone osteoplastic material. Materials were implanted into the zone of the through defect of the ileum of rabbits for a period of 28 days. Results. A high rate of resorption of materials based on chitosan in bone tissue and active growth of reticulofibrotic bone tissue along the edges of the defect was established, and the formation of cartilaginous islands and bone marrow was recorded in the group of chitosan implants with hydroxyapatite. The aseptic effect was observed with the use of implants made of chitosan and hydroxyapatite. Conclusions. The data obtained allow us to argue about the osteoconductivity of the studied materials and the prospects for further development in this direction.

[1]  N Selvamurugan,et al.  Chitosan based nanofibers in bone tissue engineering. , 2017, International journal of biological macromolecules.

[2]  Mauro Petretta,et al.  Scaffolds for Bone Tissue Engineering: State of the art and new perspectives. , 2017, Materials science & engineering. C, Materials for biological applications.

[3]  J. Ratnayake,et al.  Substituted hydroxyapatites for bone regeneration: A review of current trends. , 2017, Journal of biomedical materials research. Part B, Applied biomaterials.

[4]  E. Piva,et al.  Histological Evaluation of Bone Repair with Hydroxyapatite: A Systematic Review , 2017, Calcified Tissue International.

[5]  С. В. Николаев,et al.  Свойства деминерализованного костного матрикса для биоинженерии тканей , 2017 .

[6]  A. S. Ratushnyak,et al.  PROPERTIES OF THE DEMINERALIZED BONE MATRIX FOR BIOENGINERY OF TISSUE , 2017 .

[7]  Александр Анатольевич Иванов,et al.  Экспериментальные и теоретические исследования термоэлектрических свойств селенида меди , 2017 .

[8]  A. N. Nikolaenko,et al.  [Reconstruction of posttraumatic and postoperative defects of lower jaw]. , 2017, Khirurgiia.

[9]  J. Bumgardner,et al.  An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering. , 2016, International journal of biological macromolecules.

[10]  N Selvamurugan,et al.  A review of chitosan and its derivatives in bone tissue engineering. , 2016, Carbohydrate polymers.

[11]  Chhavi Sharma,et al.  Fabrication and characterization of novel nano-biocomposite scaffold of chitosan-gelatin-alginate-hydroxyapatite for bone tissue engineering. , 2016, Materials science & engineering. C, Materials for biological applications.

[12]  Elena García-Gareta,et al.  Osteoinduction of bone grafting materials for bone repair and regeneration. , 2015, Bone.

[13]  Sophie C Cox,et al.  3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. , 2015, Materials science & engineering. C, Materials for biological applications.

[14]  I. S. Raginov,et al.  Костнопластические остеоиндуктивные материалы в травматологии и ортопедии , 2015 .

[15]  М. В. Лекишвили,et al.  Osteoplastic osteoinductive materials in traumatology and orthopaedics , 2015 .

[16]  D. Passi,et al.  Ceramic and non-ceramic hydroxyapatite as a bone graft material: a brief review , 2015, Irish Journal of Medical Science (1971 -).

[17]  Huipin Yuan,et al.  In vitro and in vivo bioactivity assessment of a polylactic acid/hydroxyapatite composite for bone regeneration. , 2014, Biomatter.

[18]  А. Н. Гурин,et al.  Сравнительная характеристика материалов на основе хитозана, альгината и фибрина в комплексе с -трикальцийфосфатом для остеопластики (экспериментально-морфологическое исследование) , 2014 .

[19]  Jincheng Wang,et al.  Novel Mesoporous Hydroxyapatite/Chitosan Composite for Bone Repair , 2012 .

[20]  В. А. Кубышкин,et al.  Ингибиторы протонной помпы в лечении синдрома Золлингера-Эллисона// Хирургия. Журнал им , 2012 .

[21]  Ed Soil Сведения об авторах: Шамраев Александр Владимирович, кандидат биологических наук, доцент кафедры общей биологии Оренбургского государственного университета Гончарова Ольга Николаевна, соискатель кафедры экологии, общей биологии и МПБД , 2011 .

[22]  И. С. Мадай,et al.  Качество профессиональной подготовки в процессе обучения иностранным языкам в военно-медицинской академии , 2007 .

[23]  M. Rinaudo,et al.  Chitin and chitosan: Properties and applications , 2006 .