A Comparison of Accuracy and Computational Efficiency of Three Pseudospectral Methods
暂无分享,去创建一个
[1] Lorenz T. Biegler,et al. Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..
[2] I.M. Ross,et al. On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.
[3] Fariba Fahroo. On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .
[4] Waldy K. Sjauw,et al. Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .
[5] Anil V. Rao,et al. Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .
[6] P. Williams. A Gauss--Lobatto quadrature method for solving optimal control problems , 2006 .
[7] Qi Gong,et al. A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.
[8] Emanuel Todorov,et al. Optimal Control Theory , 2006 .
[9] I. Michael Ross,et al. Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .
[10] David Benson,et al. A Gauss pseudospectral transcription for optimal control , 2005 .
[11] A. Rao,et al. POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .
[12] I. Michael Ross,et al. Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .
[13] P. Williams. Jacobi pseudospectral method for solving optimal control problems , 2004 .
[14] Anil V. Rao,et al. EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .
[15] David G. Hull,et al. Optimal Control Theory for Applications , 2003 .
[16] Michael A. Saunders,et al. SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..
[17] I. Michael Ross,et al. A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .
[18] I. Michael Ross,et al. Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).
[19] I. Michael Ross,et al. A Spectral Patching Method for Direct Trajectory Optimization , 2000 .
[20] Jean-François Richard,et al. Methods of Numerical Integration , 2000 .
[21] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[22] I. Michael Ross,et al. Costate Estimation by a Legendre Pseudospectral Method , 1998 .
[23] Gamal N. Elnagar,et al. Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .
[24] J. Betts. Survey of Numerical Methods for Trajectory Optimization , 1998 .
[25] D. Hull. Conversion of optimal control problems into parameter optimization problems , 1996 .
[26] Bengt Fornberg,et al. A practical guide to pseudospectral methods: Introduction , 1996 .
[27] Gamal N. Elnagar,et al. The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..
[28] C. Canuto. Spectral methods in fluid dynamics , 1991 .
[29] Lorenz T. Biegler,et al. Simultaneous strategies for optimization of differential-algebraic systems , 1990 .
[30] J. E. Cuthrell,et al. Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .
[31] Jacques Vlassenbroeck,et al. A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..
[32] R. V. Dooren,et al. A Chebyshev technique for solving nonlinear optimal control problems , 1988 .
[33] J. E. Cuthrell,et al. On the optimization of differential-algebraic process systems , 1987 .
[34] T. A. Zang,et al. Spectral methods for fluid dynamics , 1987 .
[35] Anil V. Rao,et al. Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .
[36] G. Reddien. Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .
[37] J. Villadsen,et al. Solution of differential equation models by polynomial approximation , 1978 .
[38] J. Meditch,et al. Applied optimal control , 1972, IEEE Transactions on Automatic Control.
[39] P. Davis,et al. Methods of Numerical Integration , 1985 .
[40] M. L. Chambers. The Mathematical Theory of Optimal Processes , 1965 .
[41] L. S. Pontryagin,et al. Mathematical Theory of Optimal Processes , 1962 .