A Comparison of Accuracy and Computational Efficiency of Three Pseudospectral Methods

A comparison is made between three pseudospectral methods used to numerically solve optimal control problems. In particular, the accuracy of the state, control, and costate obtained using the Legendre, Radau, and Gauss pseudospectral methods is compared. Three examples with different degrees of complexity are used to identify key differences between the three methods. The results of this study indicate that the Radau and Gauss methods are very similar in accuracy, while both significantly outperform the Legendre method with respect to costate accuracy. Furthermore, it is found that the computational efficiency of the three methods is comparable. Based on these results and a detailed analysis of the mathematics of each method, a rationale is created to determine when each method should be implemented to solve optimal control problems.

[1]  Lorenz T. Biegler,et al.  Convergence rates for direct transcription of optimal control problems using collocation at Radau points , 2008, Comput. Optim. Appl..

[2]  I.M. Ross,et al.  On the Pseudospectral Covector Mapping Theorem for Nonlinear Optimal Control , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[3]  Fariba Fahroo On Discrete-Time Optimality Conditions for Pseudospectral Methods, AIAA (2006; Keystone, Colorado) , 2006 .

[4]  Waldy K. Sjauw,et al.  Enhanced Procedures for Direct Trajectory Optimization Using Nonlinear Programming and Implicit Integration , 2006 .

[5]  Anil V. Rao,et al.  Direct Trajectory Optimization and Costate Estimation via an Orthogonal Collocation Method , 2006 .

[6]  P. Williams A Gauss--Lobatto quadrature method for solving optimal control problems , 2006 .

[7]  Qi Gong,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2006, IEEE Transactions on Automatic Control.

[8]  Emanuel Todorov,et al.  Optimal Control Theory , 2006 .

[9]  I. Michael Ross,et al.  Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems , 2005 .

[10]  David Benson,et al.  A Gauss pseudospectral transcription for optimal control , 2005 .

[11]  A. Rao,et al.  POST-OPTIMALITY EVALUATION AND ANALYSIS OF A FORMATION FLYING PROBLEM VIA A GAUSS PSEUDOSPECTRAL METHOD , 2005 .

[12]  I. Michael Ross,et al.  Pseudospectral Knotting Methods for Solving Optimal Control Problems , 2004 .

[13]  P. Williams Jacobi pseudospectral method for solving optimal control problems , 2004 .

[14]  Anil V. Rao,et al.  EXTENSION OF A PSEUDOSPECTRAL LEGENDRE METHOD TO NON-SEQUENTIAL MULTIPLE-PHASE OPTIMAL CONTROL PROBLEMS , 2003 .

[15]  David G. Hull,et al.  Optimal Control Theory for Applications , 2003 .

[16]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[17]  I. Michael Ross,et al.  A Direct Method for Solving Nonsmooth Optimal Control Problems , 2002 .

[18]  I. Michael Ross,et al.  Direct trajectory optimization by a Chebyshev pseudospectral method , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[19]  I. Michael Ross,et al.  A Spectral Patching Method for Direct Trajectory Optimization , 2000 .

[20]  Jean-François Richard,et al.  Methods of Numerical Integration , 2000 .

[21]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[22]  I. Michael Ross,et al.  Costate Estimation by a Legendre Pseudospectral Method , 1998 .

[23]  Gamal N. Elnagar,et al.  Pseudospectral Legendre-based optimal computation of nonlinear constrained variational problems , 1998 .

[24]  J. Betts Survey of Numerical Methods for Trajectory Optimization , 1998 .

[25]  D. Hull Conversion of optimal control problems into parameter optimization problems , 1996 .

[26]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[27]  Gamal N. Elnagar,et al.  The pseudospectral Legendre method for discretizing optimal control problems , 1995, IEEE Trans. Autom. Control..

[28]  C. Canuto Spectral methods in fluid dynamics , 1991 .

[29]  Lorenz T. Biegler,et al.  Simultaneous strategies for optimization of differential-algebraic systems , 1990 .

[30]  J. E. Cuthrell,et al.  Simultaneous optimization and solution methods for batch reactor control profiles , 1989 .

[31]  Jacques Vlassenbroeck,et al.  A chebyshev polynomial method for optimal control with state constraints , 1988, Autom..

[32]  R. V. Dooren,et al.  A Chebyshev technique for solving nonlinear optimal control problems , 1988 .

[33]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[34]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[35]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[36]  G. Reddien Collocation at Gauss Points as a Discretization in Optimal Control , 1979 .

[37]  J. Villadsen,et al.  Solution of differential equation models by polynomial approximation , 1978 .

[38]  J. Meditch,et al.  Applied optimal control , 1972, IEEE Transactions on Automatic Control.

[39]  P. Davis,et al.  Methods of Numerical Integration , 1985 .

[40]  M. L. Chambers The Mathematical Theory of Optimal Processes , 1965 .

[41]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .