Transmitter Linearization by Beamforming

Millimeter-wave transmitters designed for dense signal constellations must deal with severe linearity-efficiency trade-offs. This paper proposes a method of blending beamforming and linearization that reduces the number of power amplifiers and avoids the loss of on-chip transformers. Two constant-envelope beams are combined in space to deliver a variable-envelope signal, relaxing the linearity of transmitters. A dual-transmitter prototype fabricated in 65-nm CMOS technology and designed for the 60-GHz band produces a 16QAM output of +9.7 dBm with 11% efficiency.

[1]  K. Maruhashi,et al.  A 60-GHz band CMOS phased array transmitter utilizing compact baseband phase shifters , 2009, 2009 IEEE Radio Frequency Integrated Circuits Symposium.

[2]  C. Rapp,et al.  Effects of HPA-Nonlinearity on a 4-DPSK/OFDM-Signal for a Digital Sound Broadcasting System. , 1991 .

[3]  C.G. Sodini,et al.  A 5.8GHz, 47% efficiency, linear outphase power amplifier with fully integrated power combiner , 2006, IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, 2006.

[4]  Paul R. Gray,et al.  A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communications , 1999 .

[5]  J. Paramesh,et al.  A four-antenna receiver in 90-nm CMOS for beamforming and spatial diversity , 2005, IEEE Journal of Solid-State Circuits.

[6]  David R. Cox,et al.  Linear Amplification with Nonlinear Components , 1974, IEEE Trans. Commun..

[7]  A. Hajimiri,et al.  Transmitter Architectures Based on Near-Field Direct Antenna Modulation , 2008, IEEE Journal of Solid-State Circuits.

[8]  A. Hajimiri,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Receiver and Antennas , 2006, IEEE Journal of Solid-State Circuits.

[9]  Ta-Shun Chu,et al.  An Integrated Ultra-Wideband Timed Array Receiver in 0.13 $\mu{\hbox{m}}$ CMOS Using a Path-Sharing True Time Delay Architecture , 2007, IEEE Journal of Solid-State Circuits.

[10]  Leonard R. Kahn,et al.  Single-Sideband Transmission by Envelope Elimination and Restoration , 1952, Proceedings of the IRE.

[11]  Behzad Razavi,et al.  Systematic Transistor and Inductor Modeling for Millimeter-Wave Design , 2009, IEEE Journal of Solid-State Circuits.

[12]  Piet Wambacq,et al.  A wideband beamformer for a phased-array 60GHz receiver in 40nm digital CMOS , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[13]  Asad A. Abidi,et al.  An Outphasing Power Amplifier for a Software-Defined Radio Transmitter , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[14]  F. Murden,et al.  A polar modulator transmitter for GSM/EDGE , 2004, IEEE Journal of Solid-State Circuits.

[15]  Steven Thijs,et al.  50-to-67GHz ESD-protected power amplifiers in digital 45nm LP CMOS , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[16]  T. Sowlati,et al.  Quad-band GSM/GPRS/EDGE polar loop transmitter , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[17]  S. Gambini,et al.  A 90 nm CMOS Low-Power 60 GHz Transceiver With Integrated Baseband Circuitry , 2009, IEEE Journal of Solid-State Circuits.

[18]  T. LaRocca,et al.  60GHz CMOS differential and transformer-coupled power amplifier for compact design , 2008, 2008 IEEE Radio Frequency Integrated Circuits Symposium.

[19]  H. Chireix High Power Outphasing Modulation , 1935, Proceedings of the Institute of Radio Engineers.

[20]  A. Babakhani,et al.  A 77-GHz Phased-Array Transceiver With On-Chip Antennas in Silicon: Transmitter and Local LO-Path Phase Shifting , 2006, IEEE Journal of Solid-State Circuits.

[21]  Kenichi Maruhashi,et al.  TX and RX Front-Ends for 60GHz Band in 90nm Standard Bulk CMOS , 2008, 2008 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.