Diagonalization, Uniformity, and Fixed-Point Theorems

Abstract We derive new fixed-point theorems for subrecursive classes, together with a theorem on the uniformity of certain reductions, from a general formulation of the technique of delayed diagonalization. This formulation extends the main theorem of U. Schoning (Theoret. Comput. Sci. 18 (1982), 95–103) to cases which involve infinitely many diagonal classes C k, and which allow each C k to contain uncountably many members. The main technical work ties the familiar concept of a witness function directly to the often-studied Cantor-set topology on languages, and provides a “delay construction” which refines those due to Schoning, S. Breidtbart, and D. Schmidt. Our “a.e.” fixed-point theorems do not require that the “programming system” for the subrecursive class in question be well-behaved; we compare them to results which do. The other theorem is similar to the “uniform boundedness theorem” of classical analysis, and extends work of J. Grollmann and A. Selman.

[1]  David S. Johnson The NP-Completeness Column: An Ongoing Guide , 1986, J. Algorithms.

[2]  Alan L. Selman,et al.  Complexity Measures for Public-Key Cryptosystems , 1988, SIAM J. Comput..

[3]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[4]  Manuel Blum,et al.  A Machine-Independent Theory of the Complexity of Recursive Functions , 1967, JACM.

[5]  Kurt Mehlhorn On the Size of Sets of Computable Functions , 1973, SWAT.

[6]  Diana Schmidt The Recursion-Theoretic Structure of Complexity Classes , 1985, Theor. Comput. Sci..

[7]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[8]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[9]  Albert R. Meyer,et al.  The Equivalence Problem for Regular Expressions with Squaring Requires Exponential Space , 1972, SWAT.

[10]  Neil Immerman Languages which capture complexity classes , 1983, STOC '83.

[11]  Paul Young,et al.  An introduction to the general theory of algorithms , 1978 .

[12]  Seth Breidbart On Splitting Recursive Sets , 1978, J. Comput. Syst. Sci..

[13]  Michael R. Fellows,et al.  Nonconstructive tools for proving polynomial-time decidability , 1988, JACM.

[14]  PAUL CHEW,et al.  A Note on Structure and Looking Back Applied to the Complexity of Computable Functions , 1981, J. Comput. Syst. Sci..

[15]  John Gill,et al.  Relative to a Random Oracle A, PA != NPA != co-NPA with Probability 1 , 1981, SIAM J. Comput..

[16]  R. Soare Recursively enumerable sets and degrees , 1987 .

[17]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[18]  Arnold L. Rosenberg,et al.  Real-Time Definable Languages , 1967, JACM.

[19]  Richard E. Ladner,et al.  On the Structure of Polynomial Time Reducibility , 1975, JACM.

[20]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[21]  Uwe Schöning A Uniform Approach to Obtain Diagonal Sets in Complexity Classes , 1982, Theor. Comput. Sci..

[22]  Manuel Blum,et al.  Generic oracles and oracle classes , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[23]  Kenneth W. Regan The Topology of Provability in Complexity Theory , 1986, Computational Complexity Conference.

[24]  Jeffrey D. Ullman,et al.  Some Results on Tape-Bounded Turing Machines , 1969, JACM.

[25]  Dexter Kozen,et al.  Indexings of Subrecursive Classes , 1980, Theor. Comput. Sci..

[26]  Richard J. Lipton,et al.  On the Structure of Sets in NP and Other Complexity Classes , 1981, Theor. Comput. Sci..

[27]  J. Hartmanis,et al.  On the Computational Complexity of Algorithms , 1965 .

[28]  Neil Immerman,et al.  Expressibility as a complexity measure: results and directions , 1987, SCT.

[29]  Paul Young,et al.  Remarks on Recursion versus Diagonalization and Exponentially Difficult Problems , 1981, J. Comput. Syst. Sci..

[30]  Kenneth W. Regan On Diagonalization Methods and the Structure of Language Classes , 1983, FCT.

[31]  Paul D. Seymour,et al.  Graph Minors. II. Algorithmic Aspects of Tree-Width , 1986, J. Algorithms.

[32]  R. Solovay,et al.  Relativizations of the $\mathcal{P} = ?\mathcal{NP}$ Question , 1975 .

[33]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[34]  Jack H. Lutz Resource bounded baire category and small circuits in exponential space , 1987, Computational Complexity Conference.