Discrete singular convolution for the solution of the Fokker–Planck equation

This paper introduces a discrete singular convolution algorithm for solving the Fokker–Planck equation. Singular kernels of the Hilbert-type and the delta type are presented for numerical computations. Various sequences of approximations to the singular kernels are discussed. A numerical algorithm is proposed to incorporate the approximation kernels for physical applications. Three standard problems, the Lorentz Fokker–Planck equation, the bistable model and the Henon–Heiles system, are utilized to test the accuracy, reliability, and speed of convergency of the present approach. All results are in excellent agreement with those of previous methods in the field.

[1]  Omar A. Sharafeddin,et al.  Analytic banded approximation for the discretized free propagator , 1991 .

[2]  A. D. Fokker Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld , 1914 .

[3]  Kho Th,et al.  Relaxation of a system of charged particles. , 1985 .

[4]  Kurt E. Shuler,et al.  On the Relaxation of the Hard—Sphere Rayleigh and Lorentz Gas , 1964 .

[5]  Heli Chen,et al.  The quadrature discretization method in the solution of the Fokker-Planck equation with nonclassical basis functions , 1997 .

[6]  R. Kronmal,et al.  The Estimation of Probability Densities and Cumulatives by Fourier Series Methods , 1968 .

[7]  Guo-Wei Wei,et al.  Lagrange Distributed Approximating Functionals , 1997 .

[8]  Morillo,et al.  Solution of nonlinear Fokker-Planck equations. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  W. Wasow,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[10]  B. Shizgal Eigenvalues of the Lorentz Fokker–Planck equation , 1979 .

[11]  H. Brand,et al.  Lower and upper bounds for the eigenvalues of the Fokker-Planck equation in detailed balance , 1982 .

[12]  Vincenzo Palleschi,et al.  Numerical solution of the Fokker-Planck equation: A fast and accurate algorithm , 1990 .

[13]  Donald W. Noid,et al.  Properties of vibrational energy levels in the quasi periodic and stochastic regimes , 1980 .

[14]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .

[15]  J. Light,et al.  On distributed Gaussian bases for simple model multidimensional vibrational problems , 1986 .

[16]  R. Kubo,et al.  Fluctuation and relaxation of macrovariables , 1973 .

[17]  M. Hénon,et al.  The applicability of the third integral of motion: Some numerical experiments , 1964 .

[18]  David C. Clary,et al.  Potential optimized discrete variable representation , 1992 .

[19]  G. Walter,et al.  Probability Density Estimation Using Delta Sequences , 1979 .

[20]  C. Caroli,et al.  Diffusion in a bistable potential: A systematic WKB treatment , 1979 .

[21]  E. M. Epperlein,et al.  Implicit and conservative difference scheme for the Fokker-Planck equation , 1994 .

[22]  H. Dekker,et al.  Eigenvalues of a diffusion process with a critical point , 1979 .

[23]  B. B. Winter Rate of Strong Consistency of Two Nonparametric Density Estimators , 1975 .

[24]  Peter D. Lax,et al.  Nonlinear hyperbolic equations , 1953 .

[25]  G. Wahba Optimal Convergence Properties of Variable Knot, Kernel, and Orthogonal Series Methods for Density Estimation. , 1975 .

[26]  H. Dekker Functional integration anti the Onsager-Machlup Lagrangian for continuous Markov processes in Riemannian geometries , 1979 .

[27]  H. Haken Cooperative phenomena in systems far from thermal equilibrium and in nonphysical systems , 1975 .

[28]  Edward W. Larsen,et al.  Discretization methods for one-dimensional Fokker-Planck operators , 1985 .

[29]  G. Wei Quasi wavelets and quasi interpolating wavelets , 1998 .

[30]  M. Wehner Numerical Evaluation of Path Integral Solutions to Fokker-Planck Equations with Application to Void Formation. , 1983 .

[31]  J. Korevaar Pansions and the theory of Fourier transforms , 1959 .

[32]  Kiyosi Itô 109. Stochastic Integral , 1944 .

[33]  A. Einstein Zur Theorie der Brownschen Bewegung , 1906 .

[34]  J. S. Chang,et al.  A practical difference scheme for Fokker-Planck equations☆ , 1970 .

[35]  G. Ananthakrishna,et al.  Diffusion in a bistable potential: A comparative study of different methods of solution , 1983 .

[36]  The thermalized Fokker-Planck equation , 1993 .

[37]  Muñoz Ma,et al.  Fokker-Planck equation for nonequilibrium competing dynamic models. , 1994 .

[38]  A. Poularikas The transforms and applications handbook , 2000 .

[39]  M. Feit,et al.  Solution of the Schrödinger equation by a spectral method , 1982 .

[40]  Gilbert G. Walter Expansions of distributions , 1965 .

[41]  S. Chandrasekhar Stochastic problems in Physics and Astronomy , 1943 .

[42]  R. Larson,et al.  Kramers’s theory of chemical kinetics: Eigenvalue and eigenfunction analysis , 1978 .

[43]  Bernie D. Shizgal,et al.  A Gaussian quadrature procedure for use in the solution of the Boltzmann equation and related problems , 1981 .

[44]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[45]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[46]  Blackmore,et al.  Discrete-ordinate method of solution of Fokker-Planck equations with nonlinear coefficients. , 1985, Physical review. A, General physics.

[47]  Edmund Taylor Whittaker XVIII.—On the Functions which are represented by the Expansions of the Interpolation-Theory , 1915 .

[48]  D. W. Noid,et al.  Semiclassical calculation of bound states in a multidimensional system. Use of Poincaré’s surface of section , 1975 .

[49]  D. Hoffman,et al.  Distributed approximating functional approach to the Fokker-Planck equation: Eigenfunction expansion , 1997 .

[50]  G. Ryskin,et al.  Simple procedure for correcting equations of evolution: Application to Markov processes , 1997 .

[51]  V. Petrosian,et al.  Fokker-Planck Equations of Stochastic Acceleration: A Study of Numerical Methods , 1996 .

[52]  C. Caroli,et al.  Diffusion in a bistable potential: The functional integral approach , 1981 .

[53]  K. Shuler,et al.  Relaxation of a Lorentz Gas with a Repulsive r—s Force Law , 1964 .

[54]  D. Ermak,et al.  Numerical integration of the Langevin equation: Monte Carlo simulation , 1980 .

[55]  Heli Chen,et al.  The quadrature discretization method (QDM) in the solution of the Schrödinger equation with nonclassical basis functions , 1996 .