Study of Discrete Choice Models and Adaptive Neuro-Fuzzy Inference System in the Prediction of Economic Crisis Periods in USA

In this study two approaches are applied for the prediction of the economic recession or expansion periods in USA. The first approach includes Logit and Probit models and the second is an Adaptive Neuro-Fuzzy Inference System (ANFIS) with Gaussian and Generalized Bell membership functions. The in-sample period 1950-2006 is examined and the forecasting performance of the two approaches is evaluated during the out-of sample period 2007-2010. The estimation results show that the ANFIS model outperforms the Logit and Probit model. This indicates that neuro-fuzzy model provides a better and more reliable signal on whether or not a financial crisis will take place.

[1]  Geoffrey E. Hinton,et al.  Learning internal representations by error propagation , 1986 .

[2]  Pamela K. Coats,et al.  Recognizing Financial Distress Patterns Using a Neural Network Tool , 1993 .

[3]  Allen Newell,et al.  Report on a general problem-solving program , 1959, IFIP Congress.

[4]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[5]  Nicole Jonker Logit Models. From Economics and Other Fields , 2005 .

[6]  A. Demirguç-Kunt,et al.  The Determinants of Banking Crises in Developing and Developed Countries , 1998 .

[7]  Michael Y. Hu,et al.  Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis , 1999, Eur. J. Oper. Res..

[8]  Terry Winograd,et al.  Understanding natural language , 1974 .

[9]  J. Chimka Categorical Data Analysis, Second Edition , 2003 .

[10]  Eleftherios Giovanis,et al.  Application of logit model and self‐organizing maps (SOMs) for the prediction of financial crisis periods in US economy , 2010 .

[11]  Jaeho Jang,et al.  A Comparison of Neural Network, Statistical Methods, and Variable Choice for Life Insurers' Financial Distress Prediction , 2006 .

[12]  Andrew K. Rose,et al.  Currency crashes in emerging markets: An empirical treatment , 1996 .

[13]  Bruce G. Buchanan,et al.  DENDRAL and Meta-DENDRAL: Roots of Knowledge Systems and Expert System Applications , 1993, Artif. Intell..

[14]  Barry Eichengreen,et al.  Staying Afloat When the Wind Shifts: External Factors and Emerging Market Banking Crises , 1998 .

[15]  Carmen M. Reinhart,et al.  Leading Indicators of Currency Crises , 1997, SSRN Electronic Journal.

[16]  R. Penrose A Generalized inverse for matrices , 1955 .

[17]  Daniel G. Bobrow,et al.  Natural Language Input for a Computer Problem Solving System , 1964 .

[18]  Carmen M. Reinhart,et al.  The Twin Crises: The Causes of Banking and Balance-of-Payments Problems , 1996 .

[19]  Marco Fioramanti,et al.  Predicting Sovereign Debt Crises Using Artificial Neural Networks: A Comparative Approach , 2006 .

[20]  Maria Petrou,et al.  Image processing - the fundamentals , 1999 .

[21]  Proceedings of the Cambridge Philosophical Society , 2022 .

[22]  E. Mine Cinar,et al.  Neural Networks: A New Tool for Predicting Thrift Failures , 1992 .

[23]  Dorothea Heiss-Czedik,et al.  An Introduction to Genetic Algorithms. , 1997, Artificial Life.

[24]  David H. D. Warren,et al.  An Efficient Easily Adaptable System for Interpreting Natural Language Queries , 1982, CL.

[25]  Laiq Khan,et al.  Standard Fuzzy Model Identification using Gradient Methods , 2010 .

[26]  W S McCulloch,et al.  A logical calculus of the ideas immanent in nervous activity , 1990, The Philosophy of Artificial Intelligence.

[27]  Chuen-Tsai Sun,et al.  Neuro-fuzzy modeling and control , 1995, Proc. IEEE.

[28]  Hujun Yin,et al.  Exchange rate prediction using hybrid neural networks and trading indicators , 2009, Neurocomputing.

[29]  Abdelhafid Zeghbib,et al.  ANFIS based modelling and control of non-linear systems : a tutorial , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[30]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[31]  John P. McDermott,et al.  RI: an Expert in the Computer Systems Domain , 1980, AAAI.