A Time-Varying Space-Time Autoregressive filtering algorithm for space-time adaptive processing

To remedy the performance degradation of the original space-time autoregressive (STAR) filtering algorithm when operating in nonstationary clutter environments, this paper proposes a new type of STAR algorithm that invokes the time-varying autoregressive (TVAR) model and is called time-varying space-time autoregressive (TV-STAR) filtering. We demonstrate that, in the nonstationary clutter environment, the TV-STAR algorithm exhibits a commensurate performance with respect to the stationary case while the STAR filter totally fails due to “model-mismatch”. Meanwhile, TV-STAR is shown to offer a favourable convergence rate over reduced-rank STAP techniques such as loaded sample matrix inversion (LSMI) method. Simulated data as well as two sets of measured airborne radar data are used to demonstrate the performance of TV-STAR algorithm.

[1]  Qingwen Zhang,et al.  Parametric adaptive matched filter for airborne radar applications , 2000, IEEE Trans. Aerosp. Electron. Syst..

[2]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[3]  B. Carlson Covariance matrix estimation errors and diagonal loading in adaptive arrays , 1988 .

[4]  H. Akaike A new look at the statistical model identification , 1974 .

[5]  William L. Melvin,et al.  Space-time adaptive radar performance in heterogeneous clutter , 2000, IEEE Trans. Aerosp. Electron. Syst..

[6]  I. Reed,et al.  Rapid Convergence Rate in Adaptive Arrays , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[7]  Michael C. Wicks,et al.  A space-time adaptive processing approach for improved performance and affordability , 1996, Proceedings of the 1996 IEEE National Radar Conference.

[8]  James H. Michels A Parametric Detection Approach Using Multichannel Processes , 1989 .

[9]  Karl Gerlach,et al.  Fast converging adaptive processor or a structured covariance matrix , 2000, IEEE Trans. Aerosp. Electron. Syst..

[10]  Yuri I. Abramovich,et al.  Time-Varying Autoregressive (TVAR) Models for Multiple Radar Observations , 2007, IEEE Transactions on Signal Processing.

[11]  Pramod K. Varshney,et al.  Multichannel signal detection involving temporal and cross-channel correlation , 1995 .

[12]  B.A. Johnson,et al.  Band-Inverse TVAR Covariance Matrix Estimation for Adaptive Detection , 2010, IEEE Transactions on Aerospace and Electronic Systems.

[13]  James Ward,et al.  Space-time adaptive processing for airborne radar , 1998 .

[14]  Yuri I. Abramovich,et al.  Order Estimation and Discrimination Between Stationary and Time-Varying (TVAR) Autoregressive Models , 2007, IEEE Transactions on Signal Processing.

[15]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[16]  Michael C. Wicks,et al.  STAP for clutter suppression with sum and difference beams , 2000, IEEE Trans. Aerosp. Electron. Syst..

[17]  A. L. Swindlehurst,et al.  Space-time autoregressive filtering for matched subspace STAP , 2003 .

[18]  A. Haimovich,et al.  The eigencanceler: adaptive radar by eigenanalysis methods , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[19]  L.E. Brennan,et al.  Theory of Adaptive Radar , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[20]  D. Tufts,et al.  Adaptive detection using low rank approximation to a data matrix , 1994 .

[21]  W.L. Melvin,et al.  A STAP overview , 2004, IEEE Aerospace and Electronic Systems Magazine.