In Quest of the “Next Switch”: Prospects for Greatly Reduced Power Dissipation in a Successor to the Silicon Field-Effect Transistor

Reduced power dissipation relative to the field-effect transistor (FET) is a key attribute that should be possessed by any device that has a chance of supplanting the FET as the ubiquitous building block for complex digital logic. We outline the possible physical approaches to achieving this attribute, and illustrate these approaches by citing current exploratory device research. We assess the value of the key exploratory research objectives of the semiconductor industry-sponsored Nanoelectronics Research Initiative (NRI) in the light of this pressing need to reduce dissipation in future digital logic devices.

[1]  Kimberley C. Hall,et al.  Performance of a spin-based insulated gate field effect transistor , 2006 .

[2]  P. Solomon,et al.  It’s Time to Reinvent the Transistor! , 2010, Science.

[3]  S. Datta,et al.  Use of negative capacitance to provide voltage amplification for low power nanoscale devices. , 2008, Nano letters.

[4]  R. Landauer,et al.  Minimal energy dissipation in logic , 1970 .

[5]  W. Porod,et al.  Power dissipation in nanomagnetic logic devices , 2004, 4th IEEE Conference on Nanotechnology, 2004..

[6]  Serge Luryi,et al.  Device Proposals Beyond Silicon CMOS , 2010 .

[7]  Michael E. Flatté,et al.  Challenges for semiconductor spintronics , 2007 .

[8]  Chenming Hu,et al.  Sub 50-nm FinFET: PMOS , 1999, International Electron Devices Meeting 1999. Technical Digest (Cat. No.99CH36318).

[9]  Yuan Taur,et al.  Device scaling limits of Si MOSFETs and their application dependencies , 2001, Proc. IEEE.

[10]  Arvind Kumar,et al.  Silicon CMOS devices beyond scaling , 2006, IBM J. Res. Dev..

[11]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[12]  C. Hu,et al.  Germanium-source tunnel field effect transistors with record high ION/IOFF , 2006, 2009 Symposium on VLSI Technology.

[13]  S. Datta,et al.  Switching Energy of Ferromagnetic Logic Bits , 2009, IEEE Transactions on Nanotechnology.

[14]  Jochen Mannhart,et al.  Calculation of the Capacitances of Conductors -- Perspectives for the Optimization of Electronic Devices , 2009, 0902.4673.

[15]  Mihail C. Roco,et al.  Nanoparticles and Nanotechnology Research , 1999 .

[16]  Wolfgang Porod,et al.  Clocking structures and power analysis for nanomagnet-based logic devices , 2007, Proceedings of the 2007 international symposium on Low power electronics and design (ISLPED '07).

[17]  Robert H. Dennard,et al.  Design of ion-implanted MOSFET's with very small physical dimensions , 2007 .

[18]  K. Jenkins,et al.  Operation of graphene transistors at gigahertz frequencies. , 2008, Nano letters.

[19]  Chien-Ping Lee,et al.  An energy band-pass filter using superlattice structures , 1996 .

[20]  Chi H. Lee,et al.  Ultrafast polarization switching in thin-film ferroelectrics , 2004 .

[21]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[22]  C. Lent,et al.  Clocked molecular quantum-dot cellular automata , 2003 .

[23]  Jeffrey A. Davis,et al.  The fundamental limit on binary switching energy for terascale integration (TSI) , 2000, IEEE Journal of Solid-State Circuits.

[24]  E. Tutuc,et al.  Bilayer PseudoSpin Field-Effect Transistor (BiSFET): A Proposed New Logic Device , 2009, IEEE Electron Device Letters.

[25]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[26]  Boyd Fowler,et al.  Reset noise reduction in capacitive sensors , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[27]  T. Mayer,et al.  Experimental demonstration of 100nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[28]  Ralph K. Cavin,et al.  The quest for the next information processing technology , 2008 .

[29]  Serge Luryi,et al.  Future Trends in Microelectronics: The Nano, the Giga, and the Ultra , 2004 .

[30]  Jimmy Xu,et al.  Future trends in microelectronics : from nanophotonics to sensors and energy , 2010 .

[31]  M.P. Frank Reversible Computing and Truly Adiabatic Circuits: Truly Adiabatic Circuits: The Next Great Challenge for Digital Engineering , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[32]  Dmitri E. Nikonov,et al.  Power Dissipation in Spintronic Devices Out of Thermodynamic Equilibrium , 2006 .

[33]  W. Richardson,et al.  A new three-terminal tunnel device , 1987, IEEE Electron Device Letters.

[34]  Sven Mattisson,et al.  Hot Clock nMOS , 1985 .

[35]  W. Marsden I and J , 2012 .

[36]  Phaedon Avouris,et al.  Nanotube electronics and optoelectronics , 2006 .

[37]  Charles H. Bennett,et al.  The thermodynamics of computation—a review , 1982 .

[38]  Phaedon Avouris,et al.  Phonon and electronic nonradiative decay mechanisms of excitons in carbon nanotubes. , 2008, Physical review letters.