The component graph of the uniform spanning forest: transitions in dimensions $$9,10,11,\ldots $$9,10,11,…

[1]  Eviatar B. Procaccia,et al.  Connectivity properties of Branching Interlacements , 2016, Latin American Journal of Probability and Mathematical Statistics.

[2]  Xinyi Li Percolative Properties of Brownian Interlacements and Its Vacant Set , 2016, Journal of Theoretical Probability.

[3]  Asaf Nachmias,et al.  UNIFORM SPANNING FORESTS OF PLANAR GRAPHS , 2016, Forum of Mathematics, Sigma.

[4]  Tom Hutchcroft Indistinguishability of collections of trees in the uniform spanning forest , 2018, 1810.06382.

[5]  Indistinguishability of the components of random spanning forests , 2015, The Annals of Probability.

[6]  M. Barlow,et al.  Stability of elliptic Harnack inequality , 2016, 1610.01255.

[7]  Asaf Nachmias,et al.  Indistinguishability of trees in uniform spanning forests , 2015, 1506.00556.

[8]  T. Kumagai Random walks on disordered media and their scaling limits , 2014 .

[9]  Erik I. Broman,et al.  Connectedness of Poisson cylinders in Euclidean space , 2013, 1304.6357.

[10]  On the easiest way to connect $k$ points in the Random Interlacements process , 2012, 1206.4216.

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Geometry of the random interlacement , 2011, 1101.1527.

[13]  A. Sapozhnikov,et al.  Connectivity properties of random interlacement and intersection of random walks , 2010, 1012.4711.

[14]  A. Sznitman Vacant Set of Random Interlacements and Percolation , 2007, 0704.2560.

[15]  G. Grimmett,et al.  Negative association in uniform forests and connected graphs , 2003, Random Struct. Algorithms.

[16]  Y. Peres,et al.  Geometry of the uniform spanning forest: Transitions in dimensions 4, 8, 12 ,... , 2001, math/0107140.

[17]  Y. Peres,et al.  Markov chain intersections andtheloop-erased walk , 2001, math/0107055.

[18]  J. Spencer The Strange Logic of Random Graphs , 2001 .

[19]  L. Saloff‐Coste RANDOM WALKS ON INFINITE GRAPHS AND GROUPS (Cambridge Tracts in Mathematics 138) , 2001 .

[20]  Russell Lyons,et al.  Uniform spanning forests , 2001 .

[21]  W. Woess Random walks on infinite graphs and groups, by Wolfgang Woess, Cambridge Tracts , 2001 .

[22]  Thierry Delmotte,et al.  Parabolic Harnack inequality and estimates of Markov chains on graphs , 1999 .

[23]  O. Schramm,et al.  Indistinguishability of Percolation Clusters , 1998, math/9811170.

[24]  David Bruce Wilson,et al.  Generating random spanning trees more quickly than the cover time , 1996, STOC '96.

[25]  Olle Häggström,et al.  Random-cluster measures and uniform spanning trees , 1995 .

[26]  Laurent Saloff-Coste,et al.  GAUSSIAN ESTIMATES FOR MARKOV CHAINS AND RANDOM WALKS ON GROUPS , 1993 .

[27]  Wilfrid Hodges,et al.  Model Theory: The existential case , 1993 .

[28]  R. Pemantle,et al.  Choosing a Spanning Tree for the Integer Lattice Uniformly , 1991, math/0404043.

[29]  Chris D. Godsil,et al.  A note on bounded automorphisms of infinite graphs , 1989, Graphs Comb..

[30]  D. Stroock,et al.  A new proof of Moser's parabolic harnack inequality using the old ideas of Nash , 1986 .

[31]  V. Trofimov,et al.  GRAPHS WITH POLYNOMIAL GROWTH , 1985 .

[32]  G. Lawler A self-avoiding random walk , 1980 .