VisEvol: Visual Analytics to Support Hyperparameter Search through Evolutionary Optimization

During the training phase of machine learning (ML) models, it is usually necessary to configure several hyperparameters. This process is computationally intensive and requires an extensive search to infer the best hyperparameter set for the given problem. The challenge is exacerbated by the fact that most ML models are complex internally, and training involves trial‐and‐error processes that could remarkably affect the predictive result. Moreover, each hyperparameter of an ML algorithm is potentially intertwined with the others, and changing it might result in unforeseeable impacts on the remaining hyperparameters. Evolutionary optimization is a promising method to try and address those issues. According to this method, performant models are stored, while the remainder are improved through crossover and mutation processes inspired by genetic algorithms. We present VisEvol, a visual analytics tool that supports interactive exploration of hyperparameters and intervention in this evolutionary procedure. In summary, our proposed tool helps the user to generate new models through evolution and eventually explore powerful hyperparameter combinations in diverse regions of the extensive hyperparameter space. The outcome is a voting ensemble (with equal rights) that boosts the final predictive performance. The utility and applicability of VisEvol are demonstrated with two use cases and interviews with ML experts who evaluated the effectiveness of the tool.

[1]  Dik Lun Lee,et al.  iForest: Interpreting Random Forests via Visual Analytics , 2019, IEEE Transactions on Visualization and Computer Graphics.

[2]  Gideon S. Mann,et al.  Efficient Transfer Learning Method for Automatic Hyperparameter Tuning , 2014, AISTATS.

[3]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[4]  Kevin Leyton-Brown,et al.  Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.

[5]  Yoshua Bengio,et al.  Algorithms for Hyper-Parameter Optimization , 2011, NIPS.

[6]  Josef Spidlen,et al.  Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets , 2019, Nature Communications.

[7]  Peter Henderson,et al.  Oríon : Experiment Version Control for Efficient Hyperparameter Optimization , 2018 .

[8]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[9]  Kostiantyn Kucher,et al.  StackGenVis: Alignment of Data, Algorithms, and Models for Stacking Ensemble Learning Using Performance Metrics , 2020, IEEE Transactions on Visualization and Computer Graphics.

[10]  Kevin Leyton-Brown,et al.  An Efficient Approach for Assessing Hyperparameter Importance , 2014, ICML.

[11]  Aaron Klein,et al.  BOHB: Robust and Efficient Hyperparameter Optimization at Scale , 2018, ICML.

[12]  Nando de Freitas,et al.  Taking the Human Out of the Loop: A Review of Bayesian Optimization , 2016, Proceedings of the IEEE.

[13]  D. Sculley,et al.  Google Vizier: A Service for Black-Box Optimization , 2017, KDD.

[14]  García-Martínez Finding Optimal Neural Network Architecture Using Genetic Algorithms , 2007 .

[15]  Cheng-Zhong Xu,et al.  QIM: Quantifying Hyperparameter Importance for Deep Learning , 2016, NPC.

[16]  Alaa Tharwat,et al.  Classification assessment methods , 2020, Applied Computing and Informatics.

[17]  Aaron Klein,et al.  Hyperparameter Optimization , 2017, Encyclopedia of Machine Learning and Data Mining.

[18]  E. Fernández,et al.  Finding Optimal Neural Network Architecture Using Genetic Algorithms , 2007 .

[19]  Max Jaderberg,et al.  Population Based Training of Neural Networks , 2017, ArXiv.

[20]  Bart De Moor,et al.  Easy Hyperparameter Search Using Optunity , 2014, ArXiv.

[21]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[22]  Justin D. Weisz,et al.  AutoAIViz: opening the blackbox of automated artificial intelligence with conditional parallel coordinates , 2020, IUI.

[23]  Michèle Sebag,et al.  Collaborative hyperparameter tuning , 2013, ICML.

[24]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[25]  Sean M. McNee,et al.  Being accurate is not enough: how accuracy metrics have hurt recommender systems , 2006, CHI Extended Abstracts.

[26]  Jaegul Choo,et al.  VISUALHYPERTUNER: VISUAL ANALYTICS FOR USER-DRIVEN HYPERPARAMTER TUNING OF DEEP NEURAL NETWORKS , 2019 .

[27]  Jung-Woo Ha,et al.  CHOPT : Automated Hyperparameter Optimization Framework for Cloud-Based Machine Learning Platforms , 2018, ArXiv.

[28]  HeerJeffrey,et al.  D3 Data-Driven Documents , 2011 .

[29]  Jung-Woo Ha,et al.  NSML: A Machine Learning Platform That Enables You to Focus on Your Models , 2017, ArXiv.

[30]  Lucas Pereira,et al.  A comparison of performance metrics for event classification in Non-Intrusive Load Monitoring , 2017, 2017 IEEE International Conference on Smart Grid Communications (SmartGridComm).

[31]  Lior Rokach,et al.  Ensemble learning: A survey , 2018, WIREs Data Mining Knowl. Discov..

[32]  Anders Ynnerman,et al.  Visual Analysis of the Impact of Neural Network Hyper-Parameters , 2020, MLVis@Eurographics/EuroVis.

[33]  Fernando V. Paulovich,et al.  Explainable Matrix - Visualization for Global and Local Interpretability of Random Forest Classification Ensembles , 2021, IEEE Transactions on Visualization and Computer Graphics.

[34]  Yang Liu,et al.  Somewhere Over the Rainbow: An Empirical Assessment of Quantitative Colormaps , 2018, CHI.

[35]  Bart De Moor,et al.  Hyperparameter Search in Machine Learning , 2015, ArXiv.

[36]  Guy Lapalme,et al.  A systematic analysis of performance measures for classification tasks , 2009, Inf. Process. Manag..

[37]  Bernd Bischl,et al.  Tunability: Importance of Hyperparameters of Machine Learning Algorithms , 2018, J. Mach. Learn. Res..

[38]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[39]  Tianqi Chen,et al.  XGBoost: A Scalable Tree Boosting System , 2016, KDD.

[40]  A. Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[41]  Jasper Snoek,et al.  Practical Bayesian Optimization of Machine Learning Algorithms , 2012, NIPS.

[42]  D. Chicco,et al.  The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation , 2020, BMC Genomics.

[43]  Ross Maciejewski,et al.  Explaining Vulnerabilities to Adversarial Machine Learning through Visual Analytics , 2019, IEEE Transactions on Visualization and Computer Graphics.

[44]  Andreas Kerren,et al.  A survey of surveys on the use of visualization for interpreting machine learning models , 2020, Inf. Vis..

[45]  Ameet Talwalkar,et al.  Hyperband: A Novel Bandit-Based Approach to Hyperparameter Optimization , 2016, J. Mach. Learn. Res..

[46]  Fabrizio Maria Maggi,et al.  Genetic algorithms for hyperparameter optimization in predictive business process monitoring , 2018, Inf. Syst..

[47]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[48]  Jie Cai,et al.  A Paper Tiger? An Empirical Analysis of Majority Voting , 2012 .

[49]  Mohamed Bekkar,et al.  Evaluation Measures for Models Assessment over Imbalanced Data Sets , 2013 .

[50]  Jing Wu,et al.  Visual Diagnosis of Tree Boosting Methods , 2018, IEEE Transactions on Visualization and Computer Graphics.

[51]  Kalyan Veeramachaneni,et al.  ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning , 2019, CHI.

[52]  David H. Wolpert,et al.  Stacked generalization , 1992, Neural Networks.

[53]  Carsten Binnig,et al.  Progressive Data Science: Potential and Challenges , 2018, ArXiv.

[54]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[55]  Andreas Kerren,et al.  t-viSNE: Interactive Assessment and Interpretation of t-SNE Projections , 2020, IEEE Transactions on Visualization and Computer Graphics.

[56]  F. Rossi,et al.  The State of the Art in Enhancing Trust in Machine Learning Models with the Use of Visualizations , 2020, Comput. Graph. Forum.

[57]  Andreas Kerren,et al.  EAVis: a visualization tool for evolutionary algorithms , 2005, 2005 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC'05).

[58]  Olivier Thonnard,et al.  LDA Ensembles for Interactive Exploration and Categorization of Behaviors , 2020, IEEE Transactions on Visualization and Computer Graphics.

[59]  David M. W. Powers,et al.  Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation , 2011, ArXiv.

[60]  Yun Wang,et al.  EnsembleLens: Ensemble-based Visual Exploration of Anomaly Detection Algorithms with Multidimensional Data , 2019, IEEE Transactions on Visualization and Computer Graphics.

[61]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[62]  Samarth Tripathi,et al.  Auptimizer - an Extensible, Open-Source Framework for Hyperparameter Tuning , 2019, 2019 IEEE International Conference on Big Data (Big Data).

[63]  J. Kruskal Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis , 1964 .

[64]  Kevin Leyton-Brown,et al.  Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms , 2012, KDD.

[65]  Jan N. van Rijn,et al.  Hyperparameter Importance Across Datasets , 2017, KDD.

[66]  Tie-Yan Liu,et al.  LightGBM: A Highly Efficient Gradient Boosting Decision Tree , 2017, NIPS.

[67]  Jaegul Choo,et al.  HyperTendril: Visual Analytics for User-Driven Hyperparameter Optimization of Deep Neural Networks , 2021, IEEE Transactions on Visualization and Computer Graphics.

[68]  Todd W. Mummert,et al.  Runway : machine learning model experiment management tool , 2018 .

[69]  Yoav Freund,et al.  A Short Introduction to Boosting , 1999 .

[70]  G. Convertino,et al.  HyperTuner: Visual Analytics for Hyperparameter Tuning by Professionals , 2018, 2018 IEEE Workshop on Machine Learning from User Interaction for Visualization and Analytics (MLUI).

[71]  José Hernández-Orallo,et al.  An experimental comparison of performance measures for classification , 2009, Pattern Recognit. Lett..

[72]  Ion Stoica,et al.  Tune: A Research Platform for Distributed Model Selection and Training , 2018, ArXiv.

[73]  Philipp Berens,et al.  The art of using t-SNE for single-cell transcriptomics , 2019, Nature Communications.

[74]  Steven R. Young,et al.  Optimizing deep learning hyper-parameters through an evolutionary algorithm , 2015, MLHPC@SC.

[75]  Andreas Kerren Improving Strategy Parameters of Evolutionary Computations with Interactive Coordinated Views , 2006 .

[76]  David Gotz,et al.  Progressive Visual Analytics: User-Driven Visual Exploration of In-Progress Analytics , 2014, IEEE Transactions on Visualization and Computer Graphics.

[77]  Takaya Saito,et al.  The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets , 2015, PloS one.

[78]  Takuya Akiba,et al.  Optuna: A Next-generation Hyperparameter Optimization Framework , 2019, KDD.

[79]  R. Real,et al.  AUC: a misleading measure of the performance of predictive distribution models , 2008 .

[80]  Hideyuki Takagi,et al.  Interactive evolutionary computation: fusion of the capabilities of EC optimization and human evaluation , 2001, Proc. IEEE.

[81]  Jan N. van Rijn,et al.  An Empirical Study of Hyperparameter Importance Across Datasets , 2017, AutoML@PKDD/ECML.

[82]  C. Beulah Christalin Latha,et al.  Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques , 2019, Informatics in Medicine Unlocked.

[83]  Daniel A. Keim,et al.  Integrating Data and Model Space in Ensemble Learning by Visual Analytics , 2018, IEEE Transactions on Big Data.

[84]  E. Cantu-Paz,et al.  An empirical comparison of combinations of evolutionary algorithms and neural networks for classification problems , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[85]  F. Hutter,et al.  An Efficient Approach for Assessing Parameter Importance in Bayesian Optimization , 2013 .

[86]  Desney S. Tan,et al.  EnsembleMatrix: interactive visualization to support machine learning with multiple classifiers , 2009, CHI.

[87]  Alfred Inselberg,et al.  Parallel coordinates for visualizing multi-dimensional geometry , 1987 .

[88]  Arun Ross,et al.  ATM: A distributed, collaborative, scalable system for automated machine learning , 2017, 2017 IEEE International Conference on Big Data (Big Data).

[89]  Roberto Todeschini,et al.  Quantitative Structure − Activity Relationship Models for Ready Biodegradability of Chemicals , 2013 .

[90]  Yang Wang,et al.  Manifold: A Model-Agnostic Framework for Interpretation and Diagnosis of Machine Learning Models , 2018, IEEE Transactions on Visualization and Computer Graphics.

[91]  Yan Xu,et al.  Autotune: A Derivative-free Optimization Framework for Hyperparameter Tuning , 2018, KDD.

[92]  Lars Linsen,et al.  Visual Ensemble Analysis to Study the Influence of Hyper-parameters on Training Deep Neural Networks , 2019, MLVis@EuroVis.

[93]  Alex Endert,et al.  BEAMES: Interactive Multimodel Steering, Selection, and Inspection for Regression Tasks , 2019, IEEE Computer Graphics and Applications.

[94]  Parikshit Ram,et al.  AutoAI: Automating the End-to-End AI Lifecycle with Humans-in-the-Loop , 2020, IUI Companion.