Security of Cryptosystems Based on Class Groups of Imaginary Quadratic Orders
暂无分享,去创建一个
[1] Tsuyoshi Takagi,et al. Reducing Logarithms in Totally Non-maximal Imaginary Quadratic Orders to Logarithms in Finite Fields , 1999, ASIACRYPT.
[2] Lowell Schoenfeld,et al. Sharper bounds for the Chebyshev functions () and (). II , 1976 .
[3] J. E. Littlewood,et al. On the Class-Number of the Corpus P(√−k) , 1928 .
[4] Jacques Stern,et al. Security Analysis of a Practical "on the fly" Authentication and Signature Generation , 1998, EUROCRYPT.
[5] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[6] Henri Cohen,et al. Heuristics on class groups of number fields , 1984 .
[7] J. Barkley Rosser,et al. Sharper Bounds for the Chebyshev Functions θ(x) and ψ(x). II , 1975 .
[8] Jean-Jacques Quisquater,et al. A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory , 1988, EUROCRYPT.
[9] Stephan Düllmann,et al. Ein Algorithmus zur Bestimmung der Klassengruppe positiv definierter binärer quadratischer Formen , 1991 .
[10] Detlef Hühnlein,et al. Quadratic orders for {NESSIE} - Overview and parameter sizes of three public key families , 2000 .
[11] Johannes Buchmann,et al. Cryptographic Protocols Based on Intractability of Extracting Roots and Computing Discrete Logarithms , 1999 .
[12] Henri Cohen,et al. Heuristics on class groups , 1984 .
[13] Harvey E. Rose. A course in number theory (2. ed.) , 1996 .
[14] Kaisa Nyberg,et al. Advances in Cryptology — EUROCRYPT'98 , 1998 .
[15] C. Schnorr,et al. A Monte Carlo factoring algorithm with linear storage , 1984 .
[16] Jonathan P. Sorenson,et al. Approximating the number of integers free of large prime factors , 1997, Math. Comput..
[17] Walter M. Lioen,et al. Factorization of RSA-140 Using the Number Field Sieve , 1999, CRYPTO 1999.
[18] Henri Cohen,et al. A course in computational algebraic number theory , 1993, Graduate texts in mathematics.
[19] Burton S. Kaliski. Advances in Cryptology - CRYPTO '97 , 1997 .
[20] Sachar Paulus,et al. A One Way Function Based on Ideal Arithmetic in Number Fields , 1997, CRYPTO.
[21] K. Brown,et al. Graduate Texts in Mathematics , 1982 .
[22] Johannes Buchmann,et al. Quadratic fields and cryptography , 1991 .
[23] Ulrich Vollmer,et al. Asymptotically Fast Discrete Logarithms in Quadratic Number Fields , 2000, ANTS.
[24] J. Barkley Rosser,et al. Sharper bounds for the Chebyshev functions $\theta (x)$ and $\psi (x)$ , 1975 .
[25] K. McCurley,et al. A rigorous subexponential algorithm for computation of class groups , 1989 .
[26] Johannes Buchmann,et al. LiDIA : a library for computational number theory , 1995 .
[27] Duncan A. Buell. The expectation of success using a Monte Carlo factoring method—some statistics on quadratic class numbers , 1984 .
[28] Michael J. Jacobson,et al. Subexponential class group computation in quadratic orders , 1999 .
[29] Lowell Schoenfeld,et al. Corrigendum: “Sharper bounds for the Chebyshev functions () and (). II” (Math. Comput. 30 (1976), no. 134, 337–360) , 1976 .
[30] Arjen K. Lenstra,et al. Selecting Cryptographic Key Sizes , 2000, Public Key Cryptography.
[31] Loo Keng Hua,et al. Introduction to number theory , 1982 .
[32] Niklaus Wirth,et al. Advances in Cryptology — EUROCRYPT ’88 , 2000, Lecture Notes in Computer Science.
[33] Pierre Kaplan,et al. Sur le 2-groupe des classes d'idéaux des corps quadratiques. , 1976 .
[34] Robert D. Silverman. Exposing the Mythical MIPS Year , 1999, Computer.