Approximating hidden chaotic attractors via parameter switching.

In this paper, the problem of approximating hidden chaotic attractors of a general class of nonlinear systems is investigated. The parameter switching (PS) algorithm is utilized, which switches the control parameter within a given set of values with the initial value problem numerically solved. The PS-generated attractor approximates the attractor obtained by averaging the control parameter with the switched values, which represents the hidden chaotic attractor. The hidden chaotic attractors of a generalized Lorenz system and the Rabinovich-Fabrikant system are simulated for illustration.

[1]  Nikolay V. Kuznetsov,et al.  Parameter Switching Synchronization , 2016, Appl. Math. Comput..

[2]  Guanrong Chen,et al.  Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system , 2015, 1511.07765.

[3]  Marius-F. Danca,et al.  Note on a parameter switching method for nonlinear ODEs , 2016, 1602.02489.

[4]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[5]  Peter J. Menck,et al.  How basin stability complements the linear-stability paradigm , 2013, Nature Physics.

[6]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[7]  Nikolay V. Kuznetsov,et al.  Looking More Closely at the Rabinovich-Fabrikant System , 2015, Int. J. Bifurc. Chaos.

[8]  Qingyun Wang,et al.  Synthesizing attractors of Hindmarsh–Rose neuronal systems , 2010, 1103.2451.

[9]  Nikolay V. Kuznetsov,et al.  Hidden attractors in electromechanical systems with and without equilibria , 2016 .

[10]  Marius-F. Danca,et al.  Chaos control of Hastings-Powell model by combining chaotic motions. , 2016, Chaos.

[11]  J. Yorke,et al.  Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .

[12]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[13]  Marius-F. Danca,et al.  Parrondo's Game Model to Find numerically Stable attractors of a Tumor Growth Model , 2012, Int. J. Bifurc. Chaos.

[14]  Marius-F. Danca,et al.  Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.

[15]  Nikolay V. Kuznetsov,et al.  Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..

[16]  N. V. Kuznetsov,et al.  Hidden attractors in fundamental problems and engineering models. A short survey , 2015, 1510.04803.

[17]  Marius-F. Danca,et al.  An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..

[18]  Marius-F. Danca,et al.  Modeling numerically the Rikitake's attractors by parameter switching , 2012, J. Frankl. Inst..

[19]  T. N. Mokaev,et al.  Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .

[20]  Guanrong Chen,et al.  A switching scheme for synthesizing attractors of dissipative chaotic systems , 2008, Appl. Math. Comput..

[21]  G. Leonov,et al.  Hidden attractors in dynamical systems , 2016 .

[22]  Marius-F. Danca,et al.  Alternated Julia Sets and Connectivity Properties , 2009, Int. J. Bifurc. Chaos.

[23]  Marius-F. Danca,et al.  Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control , 2014, Int. J. Bifurc. Chaos.

[24]  Marius-F. Danca,et al.  Parameter switching in a generalized Duffing system: Finding the stable attractors , 2013, Appl. Math. Comput..

[25]  Marius-F. Danca Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..

[26]  Michael Small,et al.  Deterministic and random synthesis of discrete chaos , 2007, Appl. Math. Comput..

[27]  Marius-F. Danca,et al.  Random parameter-switching synthesis of a class of hyperbolic attractors. , 2008, Chaos.

[28]  Marius-F. Danca Attractors synthesis for a Lotka-Volterra like system , 2010, Appl. Math. Comput..

[29]  T. N. Mokaev,et al.  Localization of a hidden attractor in the Rabinovich system , 2015 .

[30]  Paul Bourke,et al.  Graphical exploration of the connectivity sets of alternated Julia sets , 2013, 1810.06982.

[31]  Jack K. Hale,et al.  Topics in dynamic bifurcation theory , 1981 .

[32]  Kenneth Falconer,et al.  Fractal Geometry: Mathematical Foundations and Applications , 1990 .

[33]  Marius-F. Danca,et al.  Fractional-order attractors synthesis via parameter switchings , 2010 .

[34]  Nikolay V. Kuznetsov,et al.  Hidden attractor in the Rabinovich system, Chua circuits and PLL , 2016 .

[35]  Anders Logg,et al.  QUANTIFYING THE COMPUTABILITY OF THE LORENZ SYSTEM , 2013, 1306.2782.

[36]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[37]  Ciprian Foias,et al.  On the numerical algebraic approximation of global attractors , 1995 .

[38]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[39]  J. Hale,et al.  Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.

[40]  Guanrong Chen,et al.  A chaotic system with only one stable equilibrium , 2011, 1101.4067.

[41]  Guanrong Chen,et al.  Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching , 2013, Comput. Math. Appl..

[42]  Marius-F. Danca,et al.  Hidden chaotic attractors in fractional-order systems , 2018, 1804.10769.

[43]  M. Rabinovich,et al.  Onset of stochasticity in decay confinement of parametric instability , 1978 .

[44]  A. Logg,et al.  Quantifying the Computability of the Lorenz System Using a posteriori analysis , 2013 .

[45]  U. Feudel,et al.  Control of multistability , 2014 .