Approximating hidden chaotic attractors via parameter switching.
暂无分享,去创建一个
[1] Nikolay V. Kuznetsov,et al. Parameter Switching Synchronization , 2016, Appl. Math. Comput..
[2] Guanrong Chen,et al. Unusual dynamics and hidden attractors of the Rabinovich–Fabrikant system , 2015, 1511.07765.
[3] Marius-F. Danca,et al. Note on a parameter switching method for nonlinear ODEs , 2016, 1602.02489.
[4] Guanrong Chen,et al. Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.
[5] Peter J. Menck,et al. How basin stability complements the linear-stability paradigm , 2013, Nature Physics.
[6] Nikolay V. Kuznetsov,et al. Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.
[7] Nikolay V. Kuznetsov,et al. Looking More Closely at the Rabinovich-Fabrikant System , 2015, Int. J. Bifurc. Chaos.
[8] Qingyun Wang,et al. Synthesizing attractors of Hindmarsh–Rose neuronal systems , 2010, 1103.2451.
[9] Nikolay V. Kuznetsov,et al. Hidden attractors in electromechanical systems with and without equilibria , 2016 .
[10] Marius-F. Danca,et al. Chaos control of Hastings-Powell model by combining chaotic motions. , 2016, Chaos.
[11] J. Yorke,et al. Fractal Basin Boundaries, Long-Lived Chaotic Transients, And Unstable-Unstable Pair Bifurcation , 1983 .
[12] G. Leonov,et al. Localization of hidden Chuaʼs attractors , 2011 .
[13] Marius-F. Danca,et al. Parrondo's Game Model to Find numerically Stable attractors of a Tumor Growth Model , 2012, Int. J. Bifurc. Chaos.
[14] Marius-F. Danca,et al. Emulating "Chaos + Chaos = Order" in Chen's Circuit of Fractional Order by Parameter Switching , 2016, Int. J. Bifurc. Chaos.
[15] Nikolay V. Kuznetsov,et al. Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity , 2015, Commun. Nonlinear Sci. Numer. Simul..
[16] N. V. Kuznetsov,et al. Hidden attractors in fundamental problems and engineering models. A short survey , 2015, 1510.04803.
[17] Marius-F. Danca,et al. An averaging model for chaotic system with periodic time-varying parameter , 2010, Appl. Math. Comput..
[18] Marius-F. Danca,et al. Modeling numerically the Rikitake's attractors by parameter switching , 2012, J. Frankl. Inst..
[19] T. N. Mokaev,et al. Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion Homoclinic orbits, and self-excited and hidden attractors , 2015 .
[20] Guanrong Chen,et al. A switching scheme for synthesizing attractors of dissipative chaotic systems , 2008, Appl. Math. Comput..
[21] G. Leonov,et al. Hidden attractors in dynamical systems , 2016 .
[22] Marius-F. Danca,et al. Alternated Julia Sets and Connectivity Properties , 2009, Int. J. Bifurc. Chaos.
[23] Marius-F. Danca,et al. Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control , 2014, Int. J. Bifurc. Chaos.
[24] Marius-F. Danca,et al. Parameter switching in a generalized Duffing system: Finding the stable attractors , 2013, Appl. Math. Comput..
[25] Marius-F. Danca. Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox , 2013, Commun. Nonlinear Sci. Numer. Simul..
[26] Michael Small,et al. Deterministic and random synthesis of discrete chaos , 2007, Appl. Math. Comput..
[27] Marius-F. Danca,et al. Random parameter-switching synthesis of a class of hyperbolic attractors. , 2008, Chaos.
[28] Marius-F. Danca. Attractors synthesis for a Lotka-Volterra like system , 2010, Appl. Math. Comput..
[29] T. N. Mokaev,et al. Localization of a hidden attractor in the Rabinovich system , 2015 .
[30] Paul Bourke,et al. Graphical exploration of the connectivity sets of alternated Julia sets , 2013, 1810.06982.
[31] Jack K. Hale,et al. Topics in dynamic bifurcation theory , 1981 .
[32] Kenneth Falconer,et al. Fractal Geometry: Mathematical Foundations and Applications , 1990 .
[33] Marius-F. Danca,et al. Fractional-order attractors synthesis via parameter switchings , 2010 .
[34] Nikolay V. Kuznetsov,et al. Hidden attractor in the Rabinovich system, Chua circuits and PLL , 2016 .
[35] Anders Logg,et al. QUANTIFYING THE COMPUTABILITY OF THE LORENZ SYSTEM , 2013, 1306.2782.
[36] I. VagaitsevV.,et al. Localization of hidden Chua ’ s attractors , 2022 .
[37] Ciprian Foias,et al. On the numerical algebraic approximation of global attractors , 1995 .
[38] F. Verhulst,et al. Averaging Methods in Nonlinear Dynamical Systems , 1985 .
[39] J. Hale,et al. Ordinary Differential Equations , 2019, Fundamentals of Numerical Mathematics for Physicists and Engineers.
[40] Guanrong Chen,et al. A chaotic system with only one stable equilibrium , 2011, 1101.4067.
[41] Guanrong Chen,et al. Sustaining stable dynamics of a fractional-order chaotic financial system by parameter switching , 2013, Comput. Math. Appl..
[42] Marius-F. Danca,et al. Hidden chaotic attractors in fractional-order systems , 2018, 1804.10769.
[43] M. Rabinovich,et al. Onset of stochasticity in decay confinement of parametric instability , 1978 .
[44] A. Logg,et al. Quantifying the Computability of the Lorenz System Using a posteriori analysis , 2013 .
[45] U. Feudel,et al. Control of multistability , 2014 .