Masking by Noise in Acoustic Insects: Problems and Solutions

In most environments, acoustic signals of insects are a source of high background noise levels for many birds and mammals, but at the same time, their own communication channel is noisy due to conspecific and heterospecific signalers as well. In this chapter, I first demonstrate how this situation influences communication and the evolution of related traits at the population level. Solutions for communicating under noise differ between insect taxa, because their hearing system evolved independently many times, and the signals vary strongly in the time and frequency domain. After describing some solutions from the senders’ point of view the focus of the chapter is on properties of the sensory and central nervous system, and how these properties enable receivers to detect relevant acoustic events from irrelevant noise, and to discriminate between signal variants.

[1]  Cory T. Miller,et al.  Receiver psychology turns 20: is it time for a broader approach? , 2012, Animal Behaviour.

[2]  A. Stumpner,et al.  Hearing and frequency dependence of auditory interneurons in the parasitoid fly Homotrixa alleni (Tachinidae: Ormiini) , 2006, Journal of Comparative Physiology A.

[3]  K. Riede Modification of the courtship song by visual stimuli in the grasshopper Gomphocerus rufus (Acrididae) , 1986 .

[4]  P. K. McGregor,et al.  Animal Communication Networks: Behaviours specific to communication networks , 2005 .

[5]  MASKING INTERFERENCE AND THE EVOLUTION OF THE ACOUSTIC COMMUNICATION SYSTEM IN THE AMAZONIAN DENDROBATID FROG ALLOBATES FEMORALIS , 2006, Evolution; international journal of organic evolution.

[6]  J. Fullard The Sensory Coevolution of Moths and Bats , 1998 .

[7]  H. Römer,et al.  Strategies for hearing in noise: peripheral control over auditory sensitivity in the bushcricket sciarasaga quadrata (Austrosaginae: tettigoniidae) , 1998 .

[8]  Robert R. Capranica,et al.  Neurobehavioral Correlates of Sound Communication in Anurans , 1983 .

[9]  P. Grandcolas,et al.  A shift toward harmonics for high-frequency calling shown with phylogenetic study of frequency spectra in Eneopterinae crickets (Orthoptera, Grylloidea, Eneopteridae) , 2007 .

[10]  Manfred Hartbauer,et al.  Animal Communication Networks: Predation and noise in communication networks of neotropical katydids , 2005 .

[11]  R. Hoy,et al.  Ultrasonic startle behavior in bushcrickets (Orthoptera; Tettigoniidae) , 1991, Journal of Comparative Physiology A.

[12]  G. Pollack,et al.  Who, what, where? recognition and localization of acoustic signals by insects , 2000, Current Opinion in Neurobiology.

[13]  Heiner Römer,et al.  Die Informationsverarbeitung tympanaler Rezeptorelemente vonLocusta migratoria (Acrididae, Orthoptera) , 2004, Journal of comparative physiology.

[14]  E. Sismondo,et al.  Synchronous, Alternating, and Phase-Locked Stridulation by a Tropical Katydid , 1990, Science.

[15]  B Hedwig,et al.  Neurite‐specific Ca2+ dynamics underlying sound processing in an auditory interneurone , 2007, Developmental neurobiology.

[16]  M. Zuk,et al.  Exploitation of Sexual Signals by Predators and Parasitoids , 1998, The Quarterly Review of Biology.

[17]  Reproductive Isolation in Clearwing Moths (Lepidoptera: Sesiidae): A Tropical‐Temperate Comparison , 1983 .

[18]  D. Helversen,et al.  Acoustic communication in phaneropterid bushcrickets: species-specific delay of female stridulatory response and matching male sensory time window , 2004, Behavioral Ecology and Sociobiology.

[19]  D. Kroodsma,et al.  Ecology and evolution of acoustic communication in birds , 1997 .

[20]  H. Römer,et al.  Sexual signalling in bladder grasshoppers: tactical design for maximizing calling range. , 1997, The Journal of experimental biology.

[21]  R. Balakrishnan,et al.  Vertical stratification in an acoustically communicating ensiferan assemblage of a tropical evergreen forest in southern India , 2007, Journal of Tropical Ecology.

[22]  Jörg Lewald,et al.  High-frequency sound transmission in natural habitats: implications for the evolution of insect acoustic communication , 1992, Behavioral Ecology and Sociobiology.

[23]  Gerald S. Pollack,et al.  Discrimination of calling song models by the cricket,Teleogryllus oceanicus: the influence of sound direction on neural encoding of the stimulus temporal pattern and on phonotactic behavior , 1986, Journal of Comparative Physiology A.

[24]  A. Møller,et al.  Why have birds got multiple sexual ornaments? , 1993, Behavioral Ecology and Sociobiology.

[25]  A. Basbaum,et al.  The senses : a comprehensive reference , 2008 .

[26]  W. Bailey,et al.  The Tettigoniidae: biology, systematics and evolution. , 1990 .

[27]  H. Römer,et al.  The Signaller's Dilemma: A Cost–Benefit Analysis of Public and Private Communication , 2010, PloS one.

[28]  J. Rheinlaender,et al.  Temporal parameters of male—female sound communication in Leptophyes punctatissima , 1986 .

[29]  G. Pollack,et al.  3.31 – Invertebrate Auditory Pathways , 2008 .

[30]  Gary Marsat,et al.  A Behavioral Role for Feature Detection by Sensory Bursts , 2006, The Journal of Neuroscience.

[31]  H. Römer,et al.  A gain-control mechanism for processing of chorus sounds in the afferent auditory pathway of the bushcricket Tettigonia viridissima (Orthoptera; Tettigoniidae) , 2000, Journal of Comparative Physiology A.

[32]  W. Bailey Insect duets: underlying mechanisms and their evolution , 2003 .

[33]  B. Ronacher,et al.  Variability of spike trains and the processing of temporal patterns of acoustic signals—problems, constraints, and solutions , 2004, Journal of Comparative Physiology A.

[34]  Eliot A. Brenowitz,et al.  The Role of Body Size, Phylogeny, and Ambient Noise in the Evolution of Bird Song , 1985, The American Naturalist.

[35]  Manfred Hartbauer,et al.  Mechanisms for synchrony and alternation in song interactions of the bushcricket Mecopoda elongata (Tettigoniidae: Orthoptera) , 2005, Journal of Comparative Physiology A.

[36]  Klaus Riede,et al.  High background noise shapes selective auditory filters in a tropical cricket , 2011, Journal of Experimental Biology.

[37]  J. Endler Some general comments on the evolution and design of animal communication systems. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[38]  Fabrizio Gabbiani,et al.  Burst firing in sensory systems , 2004, Nature Reviews Neuroscience.

[39]  H. Brumm,et al.  Acoustic Communication in Noise , 2005 .

[40]  R. Cocroft,et al.  The Behavioral Ecology of Insect Vibrational Communication , 2005 .

[41]  Johannes Schul,et al.  Listening for bats: the hearing range of the bushcricket Phaneroptera falcata for bat echolocation calls measured in the field , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[42]  W. Hödl,et al.  Auditory matching of male Epipedobates femoralis (Anura: Dendrobatidae) under field conditions , 2005, Animal Behaviour.

[43]  Michael D Greenfield,et al.  Synchronous and Alternating Choruses in Insects and Anurans: Common Mechanisms and Diverse Functions , 1994 .

[44]  F Gabbiani,et al.  Feature Extraction by Burst-Like Spike Patterns in Multiple Sensory Maps , 1998, The Journal of Neuroscience.

[45]  M. A. Bee,et al.  The cocktail party problem: what is it? How can it be solved? And why should animal behaviorists study it? , 2008, Journal of comparative psychology.

[46]  W. Latimer,et al.  The acoustic behaviour of the bushcricket Tettigonia cantans I. Behavioural responses to sound and vibration , 1983, Behavioural Processes.

[47]  G. Pollack,et al.  Selective attention in an insect auditory neuron , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  U. Candolin The use of multiple cues in mate choice , 2003, Biological reviews of the Cambridge Philosophical Society.

[49]  Heiner Römer,et al.  The Sensory Ecology of Acoustic Communication in Insects , 1998 .

[50]  R. D. Alexander,et al.  EVOLUTIONARY CHANGE IN CRICKET ACOUSTICAL COMMUNICATION , 1962 .

[51]  Heiner Römer,et al.  Insect hearing in the field , 2004, Journal of Comparative Physiology A.

[52]  J. Sueur Cicada acoustic communication: potential sound partitioning in a multispecies community from Mexico (Hemiptera: Cicadomorpha: Cicadidae) , 2002 .

[53]  T. G. Forrest,et al.  SEXUAL SELECTION AND FEMALE CHOICE IN MOLE CRICKETS (SCAPTERISCUS: GRYLLOTALPIDAE): MODELLING THE EFFECTS OF INTENSITY AND MALE SPACING , 1991 .

[54]  H. Römer,et al.  Reliable detection of predator cues in afferent spike trains of a katydid under high background noise levels , 2010, Journal of Experimental Biology.

[55]  W. Hödl,et al.  HABITAT ACOUSTICS OF A NEOTROPICAL LOWLAND RAINFOREST , 2003 .

[56]  Ronald R. Hoy,et al.  Comparative Hearing: Insects , 1998, Springer Handbook of Auditory Research.

[57]  B. Ronacher,et al.  Influence of amplitude modulated noise on the recognition of communication signals in the grasshopper Chorthippus biguttulus , 2003, Journal of Comparative Physiology A.

[58]  Franz Huber,et al.  Acoustic Communication in Periodical Cicadas: Neuronal Responses to Songs of Sympatric Species , 1990 .

[59]  R. Balakrishnan,et al.  THE ASSEMBLAGE OF ACOUSTICALLY COMMUNICATING CRICKETS OF A TROPICAL EVERGREEN FOREST IN SOUTHERN INDIA: CALL DIVERSITY AND DIEL CALLING PATTERNS , 2007 .

[60]  Malcolm J. Crocker,et al.  Handbook of Acoustics , 1998 .

[61]  Michael D Greenfield,et al.  Interspecific acoustic interactions among katydids Neoconocephalus: inhibition-induced shifts in diel periodicity , 1988, Animal Behaviour.

[62]  T. G. Forrest From Sender to Receiver: Propagation and Environmental Effects on Acoustic Signals , 1994 .

[63]  Peter M. Narins,et al.  Characterization of the advertisement call oscillator in the frogEleutherodactylus coqui , 1985, Journal of Comparative Physiology A.

[64]  W. Maass,et al.  Probing Real Sensory Worlds of Receivers with Unsupervised Clustering , 2012, PloS one.

[65]  M. Bruton,et al.  Alternative Life-History Styles of Animals , 1989, Perspectives in vertebrate science.

[66]  B. Ronacher,et al.  Song recognition in the grasshopper Chorthippus biguttulus is not impaired by shortening song signals: implications for neuronal encoding , 1998, Journal of Comparative Physiology A.

[67]  D D Yager,et al.  Structure, development, and evolution of insect auditory systems , 1999, Microscopy research and technique.

[68]  R. Hoy The Evolution of Hearing in Insects as an Adaptation to Predation from Bats , 1992 .

[69]  A. V. Popov,et al.  Phonotactic behavior of crickets , 2004, Journal of comparative physiology.

[70]  J. Fullard,et al.  Information processing at a central synapse suggests a noise filter in the auditory pathway of the noctuid moth , 2004, Journal of Comparative Physiology A.

[71]  A. J. Alexander,et al.  Alternative sexual tactics in male bladder grasshoppers (Orthoptera, Pneumoridae) , 1989 .

[72]  L. Miller,et al.  Auditory input to motor neurons of the dorsal longitudinal flight muscles in a noctuid moth (Barathra brassicae L.) , 2004, Journal of Comparative Physiology A.

[73]  Michael D Greenfield,et al.  Katydid synchronous chorusing is an evolutionarily stable outcome of female choice , 1993, Nature.

[74]  J. Ewert Advances in vertebrate neuroethology , 1982, Trends in Neurosciences.

[75]  H. Römer,et al.  Acoustic signal perception in a noisy habitat: lessons from synchronising insects , 2012, Journal of Comparative Physiology A.

[76]  H. Römer Ecological Constraints for the Evolution of Hearing and Sound Communication in Insects , 1992 .

[77]  Spatial orientation in the bushcricket Leptophyes punctatissima (Phaneropterinae; Orthoptera): III. Peripheral directionality and central nervous processing of spatial cues , 2007, Journal of Comparative Physiology A.

[78]  D. Tank,et al.  In Vivo Ca2+ Dynamics in a Cricket Auditory Neuron: An Example of Chemical Computation , 1994, Science.

[79]  J A Endler,et al.  Sensory ecology, receiver biases and sexual selection. , 1998, Trends in ecology & evolution.

[80]  H. Römer,et al.  Two matched filters and the evolution of mating signals in four species of cricket , 2009, Frontiers in Zoology.

[81]  J. Schul,et al.  Auditory stream segregation in an insect , 2006, Neuroscience.

[82]  A. Hedrick Female preferences for male calling bout duration in a field cricket , 1986, Behavioral Ecology and Sociobiology.

[83]  Arne K. D. Schmidt,et al.  Solutions to the Cocktail Party Problem in Insects: Selective Filters, Spatial Release from Masking and Gain Control in Tropical Crickets , 2011, PloS one.

[84]  H. C. Bennet-Clark,et al.  Size and scale effects as constraints in insect sound communication , 1998 .

[85]  R. Hoy,et al.  Peripheral frequency mis-match in the primitive ensiferan Cyphoderris monstrosa (Orthoptera: Haglidae) , 1999, Journal of Comparative Physiology A.

[86]  Zbigniew Michalewicz,et al.  An Evolutionary Approach , 2004 .

[87]  H. Römer,et al.  Sexual differences in auditory sensitivity: mismatch of hearing threshold and call frequency in a tettigoniid (orthoptera, tettigoniidae: Zaprochilinae) , 1991, Journal of Comparative Physiology A.

[88]  T. Guilford,et al.  Receiver psychology and the evolution of animal signals , 1991, Animal Behaviour.

[89]  Berthold Hedwig,et al.  A corollary discharge maintains auditory sensitivity during sound production , 2002, Nature.

[90]  A. Stumpner,et al.  Sex-specific spectral tuning for the partner's song in the duetting bushcricket Ancistrura nigrovittata (Orthoptera: Phaneropteridae) , 1994, Journal of Comparative Physiology A.

[91]  Michael D Greenfield,et al.  Cooperation and Conflict in the Evolution of Signal Interactions , 1994 .

[92]  A. Keuper,et al.  The acoustic behaviour of the bushcricket Tettigonia cantans II. Transmission of airborne-sound and vibration signals in the biotope , 1983, Behavioural Processes.

[93]  G. Pollack,et al.  Steering responses of flying crickets to sound and ultrasound: Mate attraction and predator avoidance. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[94]  Christine V. Portfors,et al.  Compromises: sound frequencies used in echolocation by aerial-feeding bats , 1998 .

[95]  Melissa Bateson,et al.  Comparative evaluation and its implications for mate choice. , 2005, Trends in ecology & evolution.

[96]  K. Riede A Comparative Study of Mating Behaviour in Some Neotropical Grasshoppers (Acridoidea) , 2010 .

[97]  Sergio Castellano,et al.  Towards an information-processing theory of mate choice , 2009, Animal Behaviour.

[98]  Michael D Greenfield Evolution of Acoustic Communication in the Genus Neoconocephalus: Discontinuous Songs, Synchrony, and Interspecific Interactions , 1990 .

[99]  D. von Helversen,et al.  Acoustic pattern recognition and orientation in orthopteran insects: parallel or serial processing? , 1995, Journal of Comparative Physiology A.

[100]  M. Ryan,et al.  Directional Patterns of Female Mate Choice and the Role of Sensory Biases , 1992, The American Naturalist.

[101]  D. Helversen Parallel processing in auditory pattern recognition and directional analysis by the grasshopperChorthippus biguttulus L. (Acrididae) , 1984, Journal of Comparative Physiology A.

[102]  D. Waters,et al.  Wingbeat-generated ultrasound in noctuid moths increases the discharge rate of the bat-detecting A1 cell , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[103]  R. Wyttenbach,et al.  Categorical Perception of Sound Frequency by Crickets , 1996, Science.

[104]  J. Endler Signals, Signal Conditions, and the Direction of Evolution , 1992, The American Naturalist.

[105]  D. Thiele,et al.  The function of sound in male spacing behaviour in bush-crickets (Tettigoniidae, Orthoptera). , 1980 .

[106]  B. Ronacher,et al.  Effects of signal duration on the recognition of masked communication signals by the grasshopper Chorthippus biguttulus , 2000, Journal of Comparative Physiology A.

[107]  Patrick J. O. Miller,et al.  Background noise constrains communication: acoustic masking of courtship song in the fruit fly Drosophila montana , 2009 .

[108]  Heiner Römer,et al.  Insect hearing in the field , 1986, Journal of Comparative Physiology A.

[109]  K. D. Roeder,et al.  Nerve Cells and Insect Behavior , 1998 .

[110]  K. D. Roeder,et al.  Directional sensitivity of the ears of noctuid moths. , 1966, The Journal of experimental biology.

[111]  Waters. The peripheral auditory characteristics of noctuid moths: information encoding and endogenous noise , 1996, The Journal of experimental biology.

[112]  Nathan C. Donelson,et al.  Alternate tactics in male bladder grasshoppers Bullacris membracioides (Orthoptera: Pneumoridae) , 2005 .

[113]  Franz Huber,et al.  Acoustic Communication in Insects and Anurans: Common Problems and Diverse Solutions , 2002 .

[114]  Jos J. Eggermont,et al.  Burst‐firing sharpens frequency‐tuning in primary auditory cortex , 1996, Neuroreport.

[115]  L. Miller,et al.  Avoidance behavior in green lacewings , 1979, Journal of comparative physiology.

[116]  Reinhard Lakes-Harlan,et al.  Tympanal receptor cells of Schistocerca gregaria: Correlation of soma positions and dendrite attachment sites, central projections and physiologies , 1999 .

[117]  R. Wehner ‘Matched filters’ — neural models of the external world , 1987, Journal of Comparative Physiology A.

[118]  G. Manley,et al.  SPRINGER HANDBOOK OF AUDITORY RESEARCH , 2014 .

[119]  Anthony Arak,et al.  Choice of singing sites by male bushcrickets (Tettigonia viridissima) in relation to signal propagation , 1992, Behavioral Ecology and Sociobiology.

[120]  Andrew C. Mason,et al.  High ultrasonic and tremulation signals in neotropical katydids (Orthoptera: Tettigoniidae) , 1994 .

[121]  A. Rand,et al.  Inhibition of evoked calling of Dendrobates pumilio due to acoustic interference from cicada calling , 1993 .

[122]  R. Hoy,et al.  Neuroethology of the katydid T-cell. I. Tuning and responses to pure tones. , 2000, The Journal of experimental biology.

[123]  A. Popper,et al.  The Evolutionary biology of hearing , 1992 .

[124]  T. J. Walker,et al.  Acoustic Synchrony: Two Mechanisms in the Snowy Tree Cricket , 1969, Science.

[125]  Michael G. Karandinos,et al.  Resource Partitioning of the Sex Communication Channel in Clearwing Moths (Lepidoptera: Sesiidae) of Wisconsin , 1979 .

[126]  K. D. Roeder Aspects of the noctuid tympanic nerve response having significance in the avoidance of bats , 1964 .

[127]  Gerald S. Pollack,et al.  Neural Processing of Acoustic Signals , 1998 .

[128]  D. von Helversen,et al.  Selective phonotaxis in Tettigonia cantans and T. viridissima in song recognition and discrimination , 1998, Journal of Comparative Physiology A.