Ramsey-goodness—and otherwise

A celebrated result of Chvátal, Rödl, Szemerédi and Trotter states (in slightly weakened form) that, for every natural number Δ, there is a constant rΔ such that, for any connected n-vertex graph G with maximum degree Δ, the Ramsey number R(G,G) is at most rΔn, provided n is sufficiently large.In 1987, Burr made a strong conjecture implying that one may take rΔ = Δ. However, Graham, Rödl and Ruciński showed, by taking G to be a suitable expander graph, that necessarily rΔ > 2cΔ for some constant c>0. We show that the use of expanders is essential: if we impose the additional restriction that the bandwidth of G be at most some function β(n)=o(n), then R(G,G)≤(2χ(G)+4)n≤(2Δ+6)n, i.e., rΔ=2Δ+6 suffices. On the other hand, we show that Burr’s conjecture itself fails even for Pnk, the kth power of a path Pn.Brandt showed that for any c, if Δ is sufficiently large, there are connected n-vertex graphs G with Δ(G)≤Δ but R(G,K3) > cn. We show that, given Δ and H, there are β>0 and n0 such that, if G is a connected graph on n≥n0 vertices with maximum degree at most Δ and bandwidth at most βn, then we have R(G,H)=(χ(H)−1)(n−1)+σ(H), where σ(H) is the smallest size of any part in any χ(H)-partition of H. We also show that the same conclusion holds without any restriction on the maximum degree of G if the bandwidth of G is at most ɛ(H) log n=log logn.

[1]  Vladimir Nikiforov,et al.  The Cycle-Complete Graph Ramsey Numbers , 2004, Combinatorics, Probability and Computing.

[2]  R. Graham,et al.  On graphs with linear Ramsey numbers , 2000 .

[3]  Richard H. Schelp,et al.  On cycle - Complete graph ramsey numbers , 1978, J. Graph Theory.

[4]  Benny Sudakov,et al.  Density theorems for bipartite graphs and related Ramsey-type results , 2007, Comb..

[5]  David Conlon Hypergraph Packing and Sparse Bipartite Ramsey Numbers , 2009, Comb. Probab. Comput..

[6]  Vojtech Rödl,et al.  The Ramsey number of a graph with bounded maximum degree , 1983, J. Comb. Theory B.

[7]  P. Erdös Some remarks on the theory of graphs , 1947 .

[8]  G. Szekeres,et al.  A combinatorial problem in geometry , 2009 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  Frank Harary,et al.  Generalized Ramsey theory for graphs. III. Small off-diagonal numbers. , 1972 .

[11]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[12]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[13]  Stefan A. Burr,et al.  What can we hope to accomplish in generalized Ramsey theory? , 1987, Discret. Math..

[14]  Edy Tri Baskoro,et al.  On Ramsey-Type Problems , 2009 .

[15]  Paul Erdös,et al.  Generalizations of a Ramsey-theoretic result of chvátal , 1983, J. Graph Theory.

[16]  S. Radziszowski Small Ramsey Numbers , 2011 .

[17]  David Conlon,et al.  On two problems in graph Ramsey theory , 2012, Comb..

[18]  Guilherme Oliveira Mota,et al.  Ramsey numbers for bipartite graphs with small bandwidth , 2015, Eur. J. Comb..

[19]  S. Burr,et al.  Ramsey Numbers Involving Graphs with Long Suspended Paths , 1981 .

[20]  Joel H. Spencer,et al.  Edge disjoint placement of graphs , 1978, J. Comb. Theory B.

[21]  Peter Allen Covering Two-Edge-Coloured Complete Graphs with Two Disjoint Monochromatic Cycles , 2008, Comb. Probab. Comput..

[22]  Vasek Chvátal,et al.  Tree-complete graph ramsey numbers , 1977, J. Graph Theory.

[23]  W. G. Brown On Graphs that do not Contain a Thomsen Graph , 1966, Canadian Mathematical Bulletin.

[24]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[25]  W. Marsden I and J , 2012 .

[26]  V. Rosta On a ramsey-type problem of J. A. Bondy and P. Erdös. I , 1973 .

[27]  Paul Erdös,et al.  The Ramsey number for the pair complete bipartite graph-graph of limited degree , 1985 .

[28]  Frank Harary,et al.  Generalized Ramsey theory for graphs , 1972 .

[29]  Yoshiharu Kohayakawa,et al.  The 3-colored Ramsey number of odd cycles , 2005, Electron. Notes Discret. Math..

[30]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[31]  Noga Alon,et al.  On a Ramsey-type problem , 2000 .

[32]  M. Schacht,et al.  Proof of the bandwidth conjecture of Bollobás and Komlós , 2009 .

[33]  P. Erdös,et al.  Ramsey Numbers for Cycles in Graphs , 1973 .

[34]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[35]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[36]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[37]  Julia Böttcher,et al.  Bandwidth, expansion, treewidth, separators and universality for bounded-degree graphs , 2009, Eur. J. Comb..

[38]  Cecil C. Rousseau,et al.  Ramsey goodness and beyond , 2009, Comb..

[39]  K. Appel,et al.  Every planar map is four colorable. Part II: Reducibility , 1977 .

[40]  Richard H. Schelp,et al.  Graphs with Linearly Bounded Ramsey Numbers , 1993, J. Comb. Theory, Ser. B.

[41]  Richard H. Schelp,et al.  All Ramsey numbers for cycles in graphs , 1974, Discret. Math..

[42]  Hal A. Kierstead,et al.  Planar Graph Coloring with an Uncooperative Partner , 1994, Planar Graphs.

[43]  János Komlós,et al.  Blow-up Lemma , 1997, Combinatorics, Probability and Computing.

[44]  P. Erdgs,et al.  ON MAXIMAL PATHS AND CIRCUITS OF GRAPHS , 2002 .