A fixed-time second order sliding mode observer for a class of nonlinear systems

This paper presents a second order fixed time sliding mode observer based on an extension of the super-twisting algorithm. This observer can be applied to a class of nonlinear system with a block-wise representation. The block structure provides a straightforward form to the application of the proposed second order sliding mode algorithm, yielding to finite-time convergence with a settling time independent to the system initial conditions. Finally, as numerical simulation example, the case of a linear induction motor is studied, exposing the efficiency and feasibility of the proposal.

[1]  S. Drakunov Sliding-mode observers based on equivalent control method , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[2]  Jaime A. Moreno,et al.  On Discontinuous Observers for Second Order Systems: Properties, Analysis and Design , 2013 .

[3]  J. Moreno Lyapunov Approach for Analysis and Design of Second Order Sliding Mode Algorithms , 2011 .

[4]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .

[5]  Jaime A. Moreno,et al.  Strict Lyapunov Functions for the Super-Twisting Algorithm , 2012, IEEE Transactions on Automatic Control.

[6]  Andrey Polyakov,et al.  Nonlinear Feedback Design for Fixed-Time Stabilization of Linear Control Systems , 2012, IEEE Transactions on Automatic Control.

[7]  Alexander G. Loukianov,et al.  An equivalent control based sliding mode observer using high order uniform robust sliding operators , 2012, 2012 American Control Conference (ACC).

[8]  Leonid M. Fridman,et al.  Second-order sliding-mode observer for mechanical systems , 2005, IEEE Transactions on Automatic Control.

[9]  C. Dorling,et al.  Two approaches to hyperplane design in multivariable variable structure control systems , 1986 .

[10]  Hao-Chi Chang,et al.  Sliding mode control on electro-mechanical systems , 1999 .

[11]  Leonid M. Fridman,et al.  Variable Gain Super-Twisting Sliding Mode Control , 2012, IEEE Transactions on Automatic Control.

[12]  Vadim I. Utkin,et al.  Adaptive sliding mode control with application to super-twist algorithm: Equivalent control method , 2013, Autom..

[13]  Leonid Fridman,et al.  Uniform Second-Order Sliding Mode Observer for mechanical systems , 2010, 2010 11th International Workshop on Variable Structure Systems (VSS).

[14]  Christopher Edwards,et al.  A multivariable super-twisting sliding mode approach , 2014, Autom..

[15]  Vadim I. Utkin,et al.  Sliding mode control in dynamic systems , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[16]  Vadim I. Utkin,et al.  On Convergence Time and Disturbance Rejection of Super-Twisting Control , 2013, IEEE Transactions on Automatic Control.

[17]  Alexander G. Loukianov,et al.  HOSM block control of SPIM , 2012, 2012 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[18]  I. Boldea,et al.  Linear Electric Actuators and Generators: Linear Electric Actuators and Generators , 1997 .

[19]  M. I. Castellanos,et al.  Super twisting algorithm-based step-by-step sliding mode observers for nonlinear systems with unknown inputs , 2007, Int. J. Syst. Sci..

[20]  Alejandro Dávila,et al.  Variable gains super-twisting algorithm: A Lyapunov based design , 2010, Proceedings of the 2010 American Control Conference.

[21]  Leonid M. Fridman,et al.  Uniform sliding mode controllers and uniform sliding surfaces , 2012, IMA J. Math. Control. Inf..

[22]  S. Żak,et al.  Comparative study of non-linear state-observation techniques , 1987 .

[23]  Leonid M. Fridman,et al.  Uniform Robust Exact Differentiator , 2010, 49th IEEE Conference on Decision and Control (CDC).

[24]  Svetlana A. Krasnova,et al.  Cascade Design of State Observers , 2001 .

[25]  Jaime A. Moreno,et al.  A linear framework for the robust stability analysis of a Generalized Super-Twisting Algorithm , 2009, 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE).

[26]  Jaime A. Moreno,et al.  A Lyapunov approach to second-order sliding mode controllers and observers , 2008, 2008 47th IEEE Conference on Decision and Control.

[27]  Alexander S. Poznyak,et al.  Reaching Time Estimation for “Super-Twisting” Second Order Sliding Mode Controller via Lyapunov Function Designing , 2009, IEEE Transactions on Automatic Control.

[28]  Leonid M. Fridman,et al.  Optimal Lyapunov function selection for reaching time estimation of Super Twisting algorithm , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[29]  Jennifer Werfel,et al.  Linear Electric Actuators And Generators , 2016 .

[30]  Leonid M. Fridman,et al.  High order sliding mode observer for linear systems with unbounded unknown inputs , 2010, Int. J. Control.

[31]  Vadim I. Utkin,et al.  Sliding Modes in Control and Optimization , 1992, Communications and Control Engineering Series.

[32]  Leonid M. Fridman,et al.  Design of a prescribed convergence time uniform Robust Exact Observer in the presence of measurement noise , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[33]  Yuri B. Shtessel,et al.  Super-twisting adaptive sliding mode control: A Lyapunov design , 2010, 49th IEEE Conference on Decision and Control (CDC).

[34]  Leonid M. Fridman,et al.  Lyapunov-Designed Super-Twisting Sliding Mode Control for Wind Energy Conversion Optimization , 2013, IEEE Transactions on Industrial Electronics.

[35]  Leonid M. Fridman,et al.  The differentiation error of noisy signals using the Generalized Super-Twisting differentiator , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[36]  Lyapunov design of adaptive super-twisting controller applied to a pneumatic actuator , 2011 .

[37]  P. T. Krein,et al.  Nonlinear Flux-Observer-Based Control of Induction Motors , 1992, 1992 American Control Conference.