Combining Proximal and Remote Sensors in Spatial Prediction of Five Micronutrients and Soil Texture in a Case Study at Farmland Scale in Southeastern Brazil

Despite the increasing adoption of proximal sensors worldwide, rare works have coupled proximal with remotely sensed data to spatially predict soil properties. This study evaluated the contribution of proximal and remotely sensed data to predict soil texture and available contents of micronutrients using portable X-ray fluorescence (pXRF) spectrometry, magnetic susceptibility (MS), and terrain attributes (TA) via random forest algorithm. Samples were collected in Brazil from soils with high, moderate, and low weathering degrees (Oxisols, Ultisols, Inceptisols, respectively), and analyzed by pXRF and MS and for texture and available micronutrients. Seventeen TA were generated from a digital elevation model of 12.5 m spatial resolution. Predictions were made via: (i) TA; (ii) TA + pXRF; (iii) TA + MS; (iv) TA + MS + pXRF; (v) MS + pXRF; and (vi) pXRF; and validated via root mean square error (RMSE) and coefficient of determination (R2). The best predictions were achieved by: pXRF dataset alone for available Cu (R² = 0.80) and clay (R2 = 0.67) content; MS + pXRF dataset for available Fe (R2 = 0.68) and sand (R2 = 0.69) content; TA + pXRF + MS dataset for available Mn (R2 = 0.87) content. PXRF data were key to the best predictions. Soil property maps created from these predictions supported the adoption of sustainable soil management practices.

[1]  T. S. Carvalho,et al.  Soil physicochemical properties and terrain information predict soil enzymes activity in phytophysiognomies of the Quadrilátero Ferrífero region in Brazil , 2021 .

[2]  Fausto Weimar Acerbi Júnior,et al.  Rapid soil fertility prediction using X-ray fluorescence data and machine learning algorithms , 2021 .

[3]  N. Curi,et al.  Proximal sensing applied to soil texture prediction and mapping in Brazil , 2020, Geoderma Regional.

[4]  J. Demattê,et al.  Soil texture prediction using portable X-ray fluorescence spectrometry and visible near-infrared diffuse reflectance spectroscopy , 2020 .

[5]  B. Iticha,et al.  Use of infrared spectroscopy and geospatial techniques for measurement and spatial prediction of soil properties , 2020, Heliyon.

[6]  S. Chakraborty,et al.  Portable X‐ray fluorescence spectrometry analysis of soils , 2020 .

[7]  M. B. Ceddia,et al.  Field Proximal Soil Sensor Fusion for Improving High-Resolution Soil Property Maps , 2020, Soil Systems.

[8]  Abdul Mounem Mouazen,et al.  Effect of X-Ray Tube Configuration on Measurement of Key Soil Fertility Attributes with XRF , 2020, Remote. Sens..

[9]  Fausto Weimar Acerbi Júnior,et al.  Soil texture prediction in tropical soils: A portable X-ray fluorescence spectrometry approach , 2020 .

[10]  Fausto Weimar Acerbi Júnior,et al.  Tropical soil pH and sorption complex prediction via portable X-ray fluorescence spectrometry , 2020 .

[11]  M. S. Cravo,et al.  Interpretação dos resultados da análise do solo. , 2020 .

[12]  Thaís Santos Branco Dijair,et al.  Correcting field determination of elemental contents in soils via portable X-ray fluorescence spectrometry , 2020, Ciência e Agrotecnologia.

[13]  S. Chakraborty,et al.  Parent material distribution mapping from tropical soils data via machine learning and portable X-ray fluorescence (pXRF) spectrometry in Brazil , 2019, Geoderma.

[14]  Diego Fernandes Terra Machado,et al.  Transferability, accuracy, and uncertainty assessment of different knowledge-based approaches for soil types mapping , 2019, CATENA.

[15]  D. Weindorf,et al.  Elemental analysis of Cerrado agricultural soils via portable X-ray fluorescence spectrometry: Inferences for soil fertility assessment , 2019, Geoderma.

[16]  Said Nawar,et al.  Can spectral analyses improve measurement of key soil fertility parameters with X-ray fluorescence spectrometry? , 2019, Geoderma.

[17]  Diego Fernandes Terra Machado,et al.  Soil type spatial prediction from Random Forest: different training datasets, transferability, accuracy and uncertainty assessment , 2019, Scientia Agricola.

[18]  Bin Li,et al.  Determination of base saturation percentage in agricultural soils via portable X-ray fluorescence spectrometer , 2019, Geoderma.

[19]  S. Chakraborty,et al.  Use of portable X-ray fluorescence spectrometry for classifying soils from different land use land cover systems in India , 2019, Geoderma.

[20]  Budiman Minasny,et al.  Evaluating the spatial and vertical distribution of agriculturally important nutrients — nitrogen, phosphorous and boron — in North West Iran , 2019, CATENA.

[21]  M. Carneiro,et al.  Microbiological Indicators of Soil Quality Under Native Forests are Influenced by Topographic Factors. , 2019, Anais da Academia Brasileira de Ciencias.

[22]  Rita de Cássia dos Santos Navarro da Silva,et al.  Assessing the Content of Micronutrients in Soils and Sugarcane in Different Pedogeological Contexts of Northeastern Brazil , 2019, Revista Brasileira de Ciência do Solo.

[23]  Timo Oksanen,et al.  Soil sampling with drones and augmented reality in precision agriculture , 2018, Comput. Electron. Agric..

[24]  D. Weindorf,et al.  Synthesis of proximal sensing, terrain analysis, and parent material information for available micronutrient prediction in tropical soils , 2018, Precision Agriculture.

[25]  D. Weindorf,et al.  Portable X-ray fluorescence (pXRF) spectrometry applied to the prediction of chemical attributes in Inceptisols under different land uses , 2018, Ciência e Agrotecnologia.

[26]  Raphael A. Viscarra Rossel,et al.  Proximal spectral sensing in pedological assessments: vis–NIR spectra for soil classification based on weathering and pedogenesis , 2018 .

[27]  Elen Alvarenga Silva,et al.  Tropical soils characterization at low cost and time using portable X-ray fluorescence spectrometer (pXRF): Effects of different sample preparation methods , 2018 .

[28]  Abdul Mounem Mouazen,et al.  Delineation of Soil Management Zones for Variable-Rate Fertilization: A Review , 2017 .

[29]  E. Fegraus,et al.  Soil nutrient maps of Sub-Saharan Africa: assessment of soil nutrient content at 250 m spatial resolution using machine learning , 2017, Nutrient Cycling in Agroecosystems.

[30]  S. Chakraborty,et al.  Soil characterization across catenas via advanced proximal sensors , 2017 .

[31]  Philippe Lagacherie,et al.  Digital soil mapping across the globe , 2017 .

[32]  T. Behrens,et al.  Uncertainty-guided sampling to improve digital soil maps , 2017 .

[33]  B. Kalaiselvi,et al.  Assessment of spatial variability of soil properties using geospatial techniques for farm level nutrient management , 2017 .

[34]  Elen Alvarenga Silva,et al.  Portable X-ray fluorescence (pXRF) applications in tropical Soil Science , 2017 .

[35]  Wei Hu,et al.  Scale- and location-specific relationships between soil available micronutrients and environmental factors in the Fen River basin on the Chinese Loess Plateau , 2016 .

[36]  P. Tiwari,et al.  Spatial variability of soil micronutrients in the intensively cultivated Trans-Gangetic Plains of India , 2016 .

[37]  Michele Duarte de Menezes,et al.  Mapping soils in two watersheds using legacy data and extrapolation for similar surrounding areas , 2016 .

[38]  C. Patinha,et al.  Metal fractionation in topsoils and bed sediments in the Mero River rural basin: Bioavailability and relationship with soil and sediment properties , 2016 .

[39]  Michele Duarte de Menezes,et al.  Proximal Sensing and Digital Terrain Models Applied to Digital Soil Mapping and Modeling of Brazilian Latosols (Oxisols) , 2016, Remote. Sens..

[40]  Waldir de Carvalho Junior,et al.  Spatial prediction of soil surface texture in a semiarid region using random forest and multiple linear regressions , 2016 .

[41]  P. Owens,et al.  Retrieving pedologist's mental model from existing soil map and comparing data mining tools for refining a larger area map under similar environmental conditions in Southeastern Brazil , 2016 .

[42]  L. Guilherme,et al.  A Career Perspective on Soil Management in the Cerrado Region of Brazil , 2016 .

[43]  Michael Bock,et al.  System for Automated Geoscientific Analyses (SAGA) v. 2.1.4 , 2015 .

[44]  A. C. S. Costa,et al.  Magnetic susceptibility and the spatial variability of heavy metals in soils developed on basalt , 2014 .

[45]  Budiman Minasny,et al.  Constructing a soil class map of Denmark based on the FAO legend using digital techniques , 2014 .

[46]  David C. Weindorf,et al.  Chapter One – Advances in Portable X-ray Fluorescence (PXRF) for Environmental, Pedological, and Agronomic Applications , 2014 .

[47]  Philippe Lagacherie,et al.  GlobalSoilMap: Toward a Fine-Resolution Global Grid of Soil Properties , 2014 .

[48]  Budiman Minasny,et al.  High‐Resolution 3‐D Mapping of Soil Texture in Denmark , 2013 .

[49]  T. Alekseeva,et al.  Mineralogical and chemical compositions of the paleosols of different ages buried under kurgans in the southern Ergeni region and their paleoclimatic interpretation , 2013, Eurasian Soil Science.

[50]  D. Mulla Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps , 2013 .

[51]  David C. Weindorf,et al.  Characterizing soils using a portable X-ray fluorescence spectrometer: 1. Soil texture , 2011 .

[52]  J. McKay,et al.  Evaluation of the Transferability of a Knowledge-Based Soil-Landscape Model , 2010 .

[53]  Budiman Minasny,et al.  Mapping continuous depth functions of soil carbon storage and available water capacity , 2009 .

[54]  Sabine Grunwald,et al.  Multi-criteria characterization of recent digital soil mapping and modeling approaches , 2009 .

[55]  Max Kuhn,et al.  Building Predictive Models in R Using the caret Package , 2008 .

[56]  N. Fageria,et al.  Micronutrient Deficiency Problems in South America , 2008 .

[57]  G. Tang,et al.  Indian Hedgehog: A Mechanotransduction Mediator in Condylar Cartilage , 2004, Journal of dental research.

[58]  J. Connolly,et al.  Mixed livestock grazing in diverse temperate and semi-arid environments , 2000 .

[59]  Sung Yong Shin,et al.  Scattered Data Interpolation with Multilevel B-Splines , 1997, IEEE Trans. Vis. Comput. Graph..

[60]  Gary A. Peterson,et al.  Soil Attribute Prediction Using Terrain Analysis , 1993 .

[61]  N. Curi,et al.  Evolução diferenciada de latossolo vermelho-amarelo e latossolo vermelho-escuro em função da litologia gnáissica na região de lavras (MG) , 1992 .

[62]  B. Wolf The determination of boron in soil extracts, plant materials, composts, manures, water and nutrient solutions , 1971 .

[63]  I C Edmundson,et al.  Particle size analysis , 2013 .

[64]  E. Truog,et al.  Boron Determination in soils and plants using the quinalizarin reaction. , 1939 .