The Role of the OWA Operators as a Unification Tool for the Representation of Collective Choice Sets

We consider various group decision making and voting procedures presented in the perspective of two kinds of aggregation of partial scores related to the individuals’ (group’s) testimonies with respect to alternatives and individuals. We show that the ordered weighthed averaging (OWA) operators can be viewed as a unique aggregation tool that – via the change of the order of aggregation, type of aggregation, etc. – can be used for a uniform and elegant formalization of basic group decision making, social choice and voting rules under fuzzy and nonfuzzy preference relations and fuzzy and nonfuzzy majority.

[1]  K. Arrow Social Choice and Individual Values , 1951 .

[2]  Alfred De Grazia,et al.  Mathematical Derivation of an Election System , 1953 .

[3]  A. Sen,et al.  Collective Choice and Social Welfare , 2017 .

[4]  Michael D. Intriligator,et al.  A Probabilistic Model of Social Choice , 1973 .

[5]  Andrew Whinston,et al.  Fuzzy Sets and Social Choice , 1973 .

[6]  J. Blin Fuzzy Relations in Group Decision Theory , 1974 .

[7]  Gerald H. Kramer,et al.  A dynamical model of political equilibrium , 1977 .

[8]  Hans W. Gottinger,et al.  Decision Theory and Social Ethics , 1978 .

[9]  S. Orlovsky Decision-making with a fuzzy preference relation , 1978 .

[10]  H. J. Skala Arrow’s Impossibility Theorem: Some New Aspects , 1978 .

[11]  Charles R. Plott,et al.  Committee Decisions under Majority Rule: An Experimental Study , 1978, American Political Science Review.

[12]  H. Nurmi Approaches to collective decision making with fuzzy preference relations , 1981 .

[13]  Michael D. Intriligator,et al.  Probabilistic models of choice , 1982, Math. Soc. Sci..

[14]  L. Zadeh A COMPUTATIONAL APPROACH TO FUZZY QUANTIFIERS IN NATURAL LANGUAGES , 1983 .

[15]  Jin Bai Kim Fuzzy rational choice functions , 1983 .

[16]  J. Banks Sophisticated voting outcomes and agenda control , 1984 .

[17]  Janusz Kacprzyk,et al.  Management decision support systems using fuzzy sets and possibility theory , 1985 .

[18]  J. Kacprzyk Group decision-making with a fuzzy majority via linguistic quantifiers. part II: , 1985 .

[19]  Philip A. Schrodt,et al.  The Logic of Collective Choice. , 1986 .

[20]  J. Kacprzyk Group decision making with a fuzzy linguistic majority , 1986 .

[21]  H. Nurmi Comparing Voting Systems , 1987 .

[22]  James C. Bezdek,et al.  Analysis of fuzzy information , 1987 .

[23]  Ronald R. Yager,et al.  On ordered weighted averaging aggregation operators in multicriteria decisionmaking , 1988, IEEE Trans. Syst. Man Cybern..

[24]  Z. Świtalski Choice Functions Associated with Fuzzy Preference Relations , 1988 .

[25]  C. J. Hearne Non-conventional Preference Relations in Decision Making , 1989 .

[26]  M. Roubens Some properties of choice functions based on valued binary relations , 1989 .

[27]  S. Ovchinnikov,et al.  Modelling valued preference relations , 1989, Proceedings. The Nineteenth International Symposium on Multiple-Valued Logic.

[28]  Janusz Kacprzyk,et al.  Vague Notions in the Theory of Voting , 1990 .

[29]  C. R. Barrett,et al.  On choosing rationally when preferences are fuzzy , 1990 .

[30]  J. Kacprzyk,et al.  Multiperson decision making models using fuzzy sets and possibility theory , 1990 .

[31]  T. Tanino On Group Decision Making under Fuzzy Preferences , 1990 .

[32]  Antoine Billot,et al.  Aggregation of preferences: The fuzzy case , 1991 .

[33]  J. Kacprzyk,et al.  On fuzzy tournaments and their solution concepts in group decision making , 1991 .

[34]  Denis Bouyssou,et al.  A note on the sum of differences choice function for fuzzy preference relations , 1992 .

[35]  L. Kitainik Fuzzy Decision Procedures with Binary Relations: Towards A Unified Theory , 1993 .

[36]  Leonid Kitainik,et al.  Fuzzy Decision Procedures with Binary Relations , 1993, Theory and Decision Library.

[37]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.

[38]  Ayzerman,et al.  Theory of choice , 1995 .

[39]  Nicholas R. Miller Committees, Agendas and Voting , 1995 .

[40]  János C. Fodor,et al.  Characterization of the ordered weighted averaging operators , 1995, IEEE Trans. Fuzzy Syst..

[41]  Francisco Herrera,et al.  Direct approach processes in group decision making using linguistic OWA operators , 1996, Fuzzy Sets Syst..

[42]  Francisco Herrera,et al.  Applications of the linguistic OWA operators in group decision making , 1997 .

[43]  J. Kacprzyk,et al.  The Ordered Weighted Averaging Operators: Theory and Applications , 1997 .

[44]  Janusz Kacprzyk,et al.  The Ordered Weighted Averaging Operators , 1997 .

[45]  Sławomir Zadrożny,et al.  An Approach to the Consensus Reaching Support in Fuzzy Environment , 1997 .

[46]  Dimitar Filev,et al.  Induced ordered weighted averaging operators , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[47]  Janusz Kacprzyk,et al.  Computing with Words in Information/Intelligent Systems 1 , 1999 .

[48]  R. Słowiński Fuzzy sets in decision analysis, operations research and statistics , 1999 .

[49]  Janusz Kacprzyk,et al.  Group decision making under fuzziness , 1999 .

[50]  Slawomir Zadrozny,et al.  Collective choice rules: a classification using the OWA operators , 1999, EUSFLAT-ESTYLF Joint Conf..

[51]  Janusz Kacprzyk,et al.  Social Choice under Fuzziness: A Perspective , 2000 .

[52]  J. Fodor,et al.  Preferences and Decisions under Incomplete Knowledge , 2000 .

[53]  Charles C. Ragin,et al.  Fuzzy-Set Social Science , 2001 .

[54]  Francisco Herrera,et al.  Theory and Methodology Choice functions and mechanisms for linguistic preference relations , 2000 .

[55]  D. Saari Decisions and elections : explaining the unexpected , 2001 .

[56]  Slawomir Zadrozny,et al.  Computing with Words in Decision Making Through Individual and Collective Linguistic Choice Rules , 2001, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[57]  Donald G. Saari Decisions and elections , 2001 .

[58]  J. Kacprzyk,et al.  Collective choice rules in group decision making under fuzzy preferences and fuzzy majority: a unified OWA operator based approach , 2002 .

[59]  J. Kacprzyk,et al.  Dealing with imprecise knowledge on preferences and majority in group decision making: Towards a unified characterization of individual and collective choice functions , 2003 .

[60]  Ronald R. Yager,et al.  Induced aggregation operators , 2003, Fuzzy Sets Syst..

[61]  Mathias Risse,et al.  Why the count de Borda cannot beat the Marquis de Condorcet , 2005, Soc. Choice Welf..

[62]  Ingo Glöckner Fuzzy Quantifiers: A Computational Theory , 2006 .

[63]  Ronald R. Yager,et al.  Modeling the concept of majority opinion in group decision making , 2006, Inf. Sci..

[64]  Janusz Kacprzyk,et al.  POLITICAL REPRESENTATION: PERSPECTIVE FROM FUZZY SYSTEMS THEORY , 2007 .

[65]  Janusz Kacprzyk,et al.  FUZZY SETS IN POLITICAL SCIENCE: AN OVERVIEW , 2007 .

[66]  Slawomir Zadrozny,et al.  On Group Decision Making, Consensus Reaching, Voting and Voting Paradoxes under Fuzzy Preferences and a Fuzzy Majority: A Survey and some Perspectives , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[67]  Vladik Kreinovich,et al.  Handbook of Granular Computing , 2008 .

[68]  J. Kacprzyk,et al.  Towards a general and unified characterization of individual and collective choice functions under fuzzy and nonfuzzy preferences and majority via the ordered weighted average operators , 2009 .

[69]  Lotfi A. Zadeh Computing with Words in Information/Intelligent Systems 2: Applications , 2010 .

[70]  J. Kacprzyk,et al.  Consensus Under Fuzziness , 2012 .