Polarization-multiplexed metaholograms with erasable functionality

The unprecedented capability of metasurfaces in pixel-wise-level accurate light manipulation has enabled the realization of polarization-multiplexed metasurface holograms in a single or multiple channel. However, most metasurfaces are static and unable to realize active or tunable wave control in many scenarios. We introduce an erasable functionality for multi-channel metasurface holograms based on active phase tuning, which is realized using the nonvolatile chalcogenide phase change alloy of GeSbSeTe (GSST). Upon the incidence of linearly or circularly polarized waves, polarization-dependent holograms constructed using amorphous GSST (a-GSST) elliptical pillars are achieved because of the complete phase control. The a-GSST holograms feature a subwavelength spatial resolution for all elliptical pillars, with local transmittances ranging from 66% to 90%. Benefiting from the amorphous-to-crystalline phase transition of GSST, the hologram functionality can be completely erased because the crystallized pillars cannot provide the effective propagation modes required by the anisotropic phase modulations in the operating wavelength range. The unique properties of the proposed polarization-multiplexed holograms with erasable functionality offer more degrees of freedom and have potential applications in many fields, such as anti-counterfeiting, encryption, and holographic sources.

[1]  Shaolin Zhou,et al.  Phase-Change Metasurface by U-Shaped Atoms for Photonic Switch with High Contrast Ratio , 2021, Coatings.

[2]  Guo Ping Wang,et al.  Vectorial Compound Metapixels for Arbitrary Nonorthogonal Polarization Steganography , 2021, Advanced materials.

[3]  M. Pu,et al.  Catenary-based phase change metasurfaces for mid-infrared switchable wavefront control. , 2021, Optics express.

[4]  Ping Gao,et al.  Spin-decoupled metasurface for simultaneous detection of spin and orbital angular momenta via momentum transformation , 2021, Light, science & applications.

[5]  Shaolin Zhou,et al.  Phase Change Metasurfaces by Continuous or Quasi-Continuous Atoms for Active Optoelectronic Integration , 2021, Materials.

[6]  Jie Hu,et al.  A Review on Metasurface: From Principle to Smart Metadevices , 2021, Frontiers in Physics.

[7]  Nan Zhou,et al.  Dual-Channel Binary Gray-Image Display Enabled with Malus-Assisted Metasurfaces , 2020 .

[8]  U. Celano,et al.  Electrical tuning of phase-change antennas and metasurfaces , 2020, Nature Nanotechnology.

[9]  Hualiang Zhang,et al.  Electrically reconfigurable non-volatile metasurface using low-loss optical phase-change material , 2020, Nature Nanotechnology.

[10]  Hongxing Xu,et al.  Malus-metasurface-assisted polarization multiplexing , 2020, Light, science & applications.

[11]  Hao Chen,et al.  Microwave Programmable Graphene Metasurface , 2020 .

[12]  Guoxing Zheng,et al.  Three‐Channel Metasurfaces for Simultaneous Meta‐Holography and Meta‐Nanoprinting: A Single‐Cell Design Approach , 2020, Laser & Photonics Reviews.

[13]  M. Chan,et al.  Phase change induced active metasurface devices for dynamic wavefront control , 2020, Journal of Physics D: Applied Physics.

[14]  Yilei Hua,et al.  Complete Control of Multichannel, Angle‐Multiplexed, and Arbitrary Spatially Varying Polarization Fields , 2020, Advanced Optical Materials.

[15]  A. Alú,et al.  Full‐Color Complex‐Amplitude Vectorial Holograms Based on Multi‐Freedom Metasurfaces , 2019, Advanced Functional Materials.

[16]  Xiangang Luo,et al.  All-metallic geometric metasurfaces for broadband and high-efficiency wavefront manipulation , 2019 .

[17]  M. Chan,et al.  Phase Change Memory Cell With Reconfigured Electrode for Lower RESET Voltage , 2019, IEEE Journal of the Electron Devices Society.

[18]  Guoxing Zheng,et al.  Multichannel Metasurfaces for Anticounterfeiting , 2019, Physical Review Applied.

[19]  Tianchun Ye,et al.  Vector Vortex Beam Arrays: Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments (Advanced Optical Materials 8/2019) , 2019, Advanced Optical Materials.

[20]  Sergey I. Bozhevolnyi,et al.  Dynamic Metasurfaces Using Phase‐Change Chalcogenides , 2019, Advanced Optical Materials.

[21]  Tianchun Ye,et al.  Multichannel Spatially Nonhomogeneous Focused Vector Vortex Beams for Quantum Experiments , 2019, Advanced Optical Materials.

[22]  Prakash Pitchappa,et al.  Chalcogenide Phase Change Material for Active Terahertz Photonics , 2019, Advanced materials.

[23]  Guo Ping Wang,et al.  Facile metagrating holograms with broadband and extreme angle tolerance , 2018, Light, science & applications.

[24]  Li Lu,et al.  Tuneable Thermal Emission Using Chalcogenide Metasurface , 2018, Advanced Optical Materials.

[25]  Shuang Zhang,et al.  Addressable metasurfaces for dynamic holography and optical information encryption , 2018, Science Advances.

[26]  Hongyun Meng,et al.  High-Efficiency, Near-Diffraction Limited, Dielectric Metasurface Lenses Based on Crystalline Titanium Dioxide at Visible Wavelengths , 2018, Nanomaterials.

[27]  Hongwei Liu,et al.  Metamaterials based on the phase transition of VO2 , 2018, Nanotechnology.

[28]  D. Werner,et al.  Active Terahertz Chiral Metamaterials Based on Phase Transition of Vanadium Dioxide (VO2) , 2018, Scientific Reports.

[29]  Andrei Faraon,et al.  MEMS-tunable dielectric metasurface lens , 2017, Nature Communications.

[30]  Xiaoliang Ma,et al.  All‐Dielectric Metasurfaces for Simultaneous Giant Circular Asymmetric Transmission and Wavefront Shaping Based on Asymmetric Photonic Spin–Orbit Interactions , 2017 .

[31]  H. Mosallaei,et al.  Electrically Tunable Metamaterials Based on Multimaterial Nanowires Incorporating Transparent Conductive Oxides , 2017, Scientific Reports.

[32]  Zhitang Song,et al.  Low Power Phase Change Memory With Vertical Carbon Nanotube Electrode , 2017, IEEE Journal of the Electron Devices Society.

[33]  Chengkuo Lee,et al.  Active Phase Transition via Loss Engineering in a Terahertz MEMS Metamaterial , 2017, Advanced materials.

[34]  M. Notomi,et al.  Coherent control of high efficiency metasurface beam deflectors with a back partial reflector , 2017 .

[35]  R. Agarwal,et al.  Strain Multiplexed Metasurface Holograms on a Stretchable Substrate. , 2017, Nano letters.

[36]  M. Brongersma,et al.  Dynamic Reflection Phase and Polarization Control in Metasurfaces. , 2017, Nano letters.

[37]  Xianzhong Chen,et al.  Vector Vortex Beam Generation with a Single Plasmonic Metasurface , 2016 .

[38]  Guoxing Zheng,et al.  Helicity multiplexed broadband metasurface holograms , 2015, Nature Communications.

[39]  Nikolay I. Zheludev,et al.  Electrically Controlled Nanostructured Metasurface Loaded with Liquid Crystal: Toward Multifunctional Photonic Switch , 2015 .

[40]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[41]  A. Arbabi,et al.  Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. , 2014, Nature nanotechnology.

[42]  A. Arbabi,et al.  Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays , 2014, Nature Communications.

[43]  Qiaofeng Tan,et al.  Dual-polarity plasmonic metalens for visible light , 2012, Nature Communications.

[44]  N. Yu,et al.  Light Propagation with Phase Discontinuities: Generalized Laws of Reflection and Refraction , 2011, Science.

[45]  Willie J Padilla,et al.  Active terahertz metamaterial devices , 2006, Nature.

[46]  Jie Li,et al.  Terahertz metasurface zone plates with arbitrary polarizations to a fixed polarization conversion , 2022, Opto-Electronic Science.