Host S-nitrosylation inhibits clostridial small molecule–activated glucosylating toxins

[1]  K. Soman,et al.  Quantification of cysteinyl S-nitrosylation by fluorescence in unbiased proteomic studies. , 2011, Biochemistry.

[2]  K. Aktories,et al.  Inositol Hexakisphosphate-dependent Processing of Clostridium sordellii Lethal Toxin and Clostridium novyi α-Toxin* , 2011, The Journal of Biological Chemistry.

[3]  I. Just,et al.  Autoproteolytic cleavage mediates cytotoxicity of Clostridium difficile toxin A , 2011, Naunyn-Schmiedeberg's Archives of Pharmacology.

[4]  Anutosh Chakraborty,et al.  Inositol Pyrophosphates Inhibit Akt Signaling, Thereby Regulating Insulin Sensitivity and Weight Gain , 2010, Cell.

[5]  K. Garcia,et al.  Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. , 2010, Chemistry & biology.

[6]  Nigel P. Minton,et al.  The role of toxin A and toxin B in Clostridium difficile infection , 2010, Nature.

[7]  Yan Li,et al.  Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. , 2010, Gastroenterology.

[8]  V. Gladyshev,et al.  Structural analysis of cysteine S-nitrosylation: a modified acid-based motif and the emerging role of trans-nitrosylation. , 2010, Journal of molecular biology.

[9]  J. Stamler,et al.  Protein denitrosylation: enzymatic mechanisms and cellular functions , 2009, Nature Reviews Molecular Cell Biology.

[10]  J. Stamler,et al.  Protein S-nitrosylation in health and disease: a current perspective. , 2009, Trends in molecular medicine.

[11]  G. Minasov,et al.  Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites* , 2009, The Journal of Biological Chemistry.

[12]  S. Tzipori,et al.  An ultrasensitive rapid immunocytotoxicity assay for detecting Clostridium difficile toxins. , 2009, Journal of microbiological methods.

[13]  D. Lacy,et al.  Structure-Function Analysis of Inositol Hexakisphosphate-induced Autoprocessing in Clostridium difficile Toxin A* , 2009, The Journal of Biological Chemistry.

[14]  N. Grishin,et al.  CPDadh: A new peptidase family homologous to the cysteine protease domain in bacterial MARTX toxins , 2009, Protein science : a publication of the Protein Society.

[15]  M. Popoff,et al.  Multifaceted role of Rho, Rac, Cdc42 and Ras in intercellular junctions, lessons from toxins. , 2009, Biochimica et biophysica acta.

[16]  Julian I. Rood,et al.  Toxin B is essential for virulence of Clostridium difficile , 2009, Nature.

[17]  C. Herrmann,et al.  Autocatalytic Processing of Clostridium difficile Toxin B , 2009, Journal of Biological Chemistry.

[18]  Jeffrey D Goldsmith,et al.  A mouse model of Clostridium difficile-associated disease. , 2008, Gastroenterology.

[19]  K. Garcia,et al.  Small Molecule-Induced Allosteric Activation of the Vibrio cholerae RTX Cysteine Protease Domain , 2008, Science.

[20]  K. Procházková,et al.  Structure-Function Analysis of Inositol Hexakisphosphate-induced Autoprocessing of the Vibrio cholerae Multifunctional Autoprocessing RTX Toxin* , 2008, Journal of Biological Chemistry.

[21]  M. Karplus,et al.  Allostery and cooperativity revisited , 2008, Protein science : a publication of the Protein Society.

[22]  J. Stamler,et al.  Regulated Protein Denitrosylation by Cytosolic and Mitochondrial Thioredoxins , 2008, Science.

[23]  Klaus Aktories,et al.  Auto-catalytic Cleavage of Clostridium difficile Toxins A and B Depends on Cysteine Protease Activity* , 2007, Journal of Biological Chemistry.

[24]  Karla J. F. Satchell MARTX, Multifunctional Autoprocessing Repeats-in-Toxin Toxins , 2007, Infection and Immunity.

[25]  Karla J. F. Satchell,et al.  Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain , 2007, The EMBO journal.

[26]  M. Sofroniew,et al.  Enteric glia regulate intestinal barrier function and inflammation via release of S-nitrosoglutathione. , 2007, Gastroenterology.

[27]  S. Tenzer,et al.  Autocatalytic cleavage of Clostridium difficile toxin B , 2007, Nature.

[28]  A. Hausladen,et al.  Assessment of nitric oxide signals by triiodide chemiluminescence , 2007, Proceedings of the National Academy of Sciences.

[29]  Limin Liu,et al.  Protection from Experimental Asthma by an Endogenous Bronchodilator , 2005, Science.

[30]  D. Speicher,et al.  Identification of alternative products and optimization of 2-nitro-5-thiocyanatobenzoic acid cyanylation and cleavage at cysteine residues. , 2004, Analytical biochemistry.

[31]  T. Savidge,et al.  Clostridium difficile toxin B is an inflammatory enterotoxin in human intestine. , 2003, Gastroenterology.

[32]  Limin Liu,et al.  Screening for Nitric Oxide-Dependent Protein-Protein Interactions , 2003, Science.

[33]  J. Stamler,et al.  Basal and Stimulated Protein S-Nitrosylation in Multiple Cell Types and Tissues* , 2002, The Journal of Biological Chemistry.

[34]  Solomon H. Snyder,et al.  The Biotin Switch Method for the Detection of S-Nitrosylated Proteins , 2001, Science's STKE.

[35]  J. Stamler,et al.  The Skeletal Muscle Calcium Release Channel Coupled O2 Sensor and NO Signaling Functions , 2000, Cell.

[36]  J. Stamler,et al.  Functional Coupling of Oxygen Binding and Vasoactivity inS-Nitrosohemoglobin* , 2000, The Journal of Biological Chemistry.

[37]  R. Huber,et al.  Crystal structure of gingipain R: an Arg‐specific bacterial cysteine proteinase with a caspase‐like fold , 1999, The EMBO journal.

[38]  C. Lowenstein,et al.  An Antiviral Mechanism of Nitric Oxide , 1999, Immunity.

[39]  C. Pothoulakis,et al.  Nitric oxide inhibits rat intestinal secretion by Clostridium difficile toxin A but not Vibrio cholerae enterotoxin. , 1996, Gastroenterology.

[40]  S. Snyder,et al.  Inducible Nitric Oxide Synthase Binds, S-Nitrosylates, and Activates Cyclooxygenase-2 , 2005, Science.