High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing

We present an overview of our results on the design, material growth, device characterization, and spectroscopic applications of MOVPE-grown quantum cascade lasers (QCLs). These devices are capable of room-temperature (RT) continuous-wave operation and high power emission. The first section focuses on growth of laser material, device fabrication, and quantum design The second section discusses RT pulsed operation, in particular the doping dependence of laser performance and broadband emission. Near-field measurements performed on the devices' facets correlating lateral modes to device size are also discussed. Section III deals with continuous-wave high-temperature operation from lasers with different active region designs, including their spectral characteristics and in the emergence of coherent phenomena at high power levels. Section IV analyses the devices thermal dissipation capabilities, while in Section V we report reliability data. The final section focuses on spectroscopic applications and tunability. Optofluidic narrow ridge lasers and their application to chemical sensing are reported along with recent data on a broadband on chip spectrometer consisting of individually addressable distributed feedback QCLs. Various spectroscopic techniques and in particular quartz-enhanced photoacoustic absorption spectroscopy and its use in gas sensing systems are discussed. Finally, optofluidic narrow ridge lasers and their applications to fluid sensing are presented.

[1]  Federico Capasso,et al.  Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .

[2]  Scott W. Corzine,et al.  Metalorganic vapor-phase epitaxy of room-temperature, low-threshold InGaAs/AlInAs quantum cascade lasers , 2004 .

[3]  Scott W. Corzine,et al.  High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .

[4]  Manijeh Razeghi,et al.  High-power λ∼9.5μm quantum-cascade lasers operating above room temperature in continuous-wave mode , 2006 .

[5]  A. Kung,et al.  Photoacoustic Trace Detection of Methane Using Compact Solid-State Lasers† , 2000 .

[6]  Frank K. Tittel,et al.  Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region , 2005 .

[7]  Carlo Sirtori,et al.  Short wavelength ( 3:4 m) quantum cascade laser based on strain-compensated InGaAs/AllnAs , 1998 .

[8]  H. Risken,et al.  Self‐Pulsing in Lasers , 1968 .

[9]  Federico Capasso,et al.  Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. , 2000, Science.

[10]  G. Dehlinger,et al.  Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.

[11]  Baylor Plaza Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide , 2006 .

[12]  T. J. Watson,et al.  Apertureless near-field optical microscope , 1999 .

[13]  A. Kosterev,et al.  Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. , 2004, Applied optics.

[14]  Rui Q. Yang,et al.  Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy , 2004 .

[15]  Applied Physics,et al.  Photoacoustic phase shift as a chemically selective spectroscopic parameter , 2022 .

[16]  H. Ambrosius,et al.  Kink power in weakly index guided semiconductor lasers , 1995 .

[17]  A. Kosterev,et al.  Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm , 2006 .

[18]  Scott W. Corzine,et al.  Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy , 2004 .

[19]  David Chapman,et al.  Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .

[20]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[21]  A. Kosterev,et al.  Quartz-enhanced photoacoustic spectroscopy. , 2002, Optics letters.

[22]  Vincenzo Spagnolo,et al.  Simultaneous measurement of the electronic and lattice temperatures in GaAs/Al0.45Ga0.55As quantum-cascade lasers: Influence on the optical performance , 2004 .

[23]  M. Beck,et al.  Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .

[24]  Benjamin G. Lee,et al.  Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy , 2006 .

[25]  F. Capasso,et al.  Quantum Cascade Lasers , 2002 .

[26]  Christian Pflugl,et al.  Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. , 2007, Optics express.

[27]  Bret D. Cannon,et al.  Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers , 2006 .

[28]  P. Collot,et al.  Quantum Cascade Lasers , 1997, CLEO/Europe Conference on Lasers and Electro-Optics.

[29]  K. Namjou,et al.  Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy , 2006 .

[30]  Scott W. Corzine,et al.  High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy , 2006 .

[31]  A. Kosterev,et al.  Chemical sensors based on quantum cascade lasers , 2002 .

[32]  Federico Capasso,et al.  Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy , 2005 .

[33]  F. Capasso,et al.  Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. , 2001, Applied optics.

[34]  H. Le,et al.  Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers. , 2003, Applied optics.

[35]  E. Gini,et al.  Room temperature continuous wave operation of quantum cascade lasers , 2002, IEEE 18th International Semiconductor Laser Conference.

[36]  Trace Humidity Sensor Based on Quartz-Enhanced Photoacoustic Spectroscopy , 2006 .

[37]  M. Razeghi,et al.  Beam steering in high-power CW quantum-cascade lasers , 2005, IEEE Journal of Quantum Electronics.

[38]  G. Berden,et al.  Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .

[39]  V. Baev,et al.  Laser intracavity absorption spectroscopy , 1999 .

[40]  Federico Capasso,et al.  Ultra-broadband semiconductor laser , 2002, Nature.

[41]  Frank K. Tittel,et al.  Mid-Infrared Laser Applications in Spectroscopy , 2003 .

[42]  Federico Capasso,et al.  High-power λ≈8 μm quantum cascade lasers with near optimum performance , 1998 .

[43]  A. Krysa,et al.  Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy , 2003 .

[44]  Frank K. Tittel,et al.  Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications , 2005 .

[45]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[46]  David D. Nelson,et al.  Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1 , 2006 .

[47]  Direct imaging of a laser mode via midinfrared near-field microscopy , 2007 .

[48]  A. Kosterev,et al.  Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems , 2005 .

[49]  S. Corzine,et al.  Coherent instabilities in a semiconductor laser with fast gain recovery , 2007 .

[50]  F. Capasso,et al.  Cavity ringdown spectroscopy of NO with a cw single frequency quantum cascade laser , 2001, CLEO 2001.

[51]  Dirk Richter,et al.  Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source , 2006 .

[52]  F. K. Tittel,et al.  7 Tunable infrared laser spectroscopy , 2002 .

[53]  M. Beck,et al.  Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[54]  Hermann Haken,et al.  Quantum theory of light propagation in a fluctuating laser-active medium , 1968 .

[55]  T. L. Myers,et al.  Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .

[56]  Fritz Keilmann,et al.  Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .

[57]  Manijeh Razeghi,et al.  High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .

[58]  Roland Teissier,et al.  Very short wavelength „ =3.1–3.3 m... quantum cascade lasers , 2006 .

[59]  F. Capasso,et al.  Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .

[60]  Jérôme Faist,et al.  External cavity quantum cascade laser , 2010 .

[61]  GaAs–based quantum cascade lasers , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[62]  A. Kosterev,et al.  Applications of quartz tuning forks in spectroscopic gas sensing , 2005 .

[63]  Mattias Beck,et al.  Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers , 2004 .

[64]  A. Kosterev,et al.  Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN , 2006 .

[65]  Federico Capasso,et al.  Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.

[66]  J. Faist,et al.  Quantum cascade laser with plasmon‐enhanced waveguide operating at 8.4 μm wavelength , 1995 .

[67]  A. Boccara,et al.  Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda/600. , 1996, Optics letters.

[68]  F. Capasso,et al.  Recent progress in quantum cascade lasers and applications , 2001 .

[69]  P. Hess,et al.  Photoacoustic measurement of N2O concentrations in ambient air with a pulsed optical parametric oscillator , 2006 .

[70]  D. Sivco,et al.  Electronic anti-Stokes-Raman emission in quantum-cascade lasers , 2005 .

[71]  Yargo Bonetti,et al.  Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≃5.4μm , 2005 .

[72]  Frank K Tittel,et al.  Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. , 2004, Applied optics.

[73]  Damien Weidmann,et al.  Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. , 2004, Optics letters.

[74]  E. Verpoorte Chip vision-optics for microchips. , 2003, Lab on a chip.

[75]  Quasiphase matching of second-harmonic generation in quantum cascade lasers by Stark shift of electronic resonances , 2006 .

[76]  Vincenzo Spagnolo,et al.  Thermal modeling of GaInAs∕AlInAs quantum cascade lasers , 2006 .

[77]  Christelle Monat,et al.  Integrated optofluidics: A new river of light , 2007 .

[78]  D. Erickson,et al.  Integrated microfluidic devices , 2004 .

[79]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[80]  D. Psaltis,et al.  Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.

[81]  David I. Rosen,et al.  Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL , 2005 .

[82]  Carlo Sirtori,et al.  Resonant tunneling in quantum cascade lasers , 1998 .

[83]  O. Tadanaga,et al.  Broadband difference frequency generation around phase-match singularity , 2005 .