High-Performance Quantum Cascade Lasers Grown by Metal-Organic Vapor Phase Epitaxy and Their Applications to Trace Gas Sensing
暂无分享,去创建一个
N. Yu | G. Wysocki | M. Troccoli | F. Capasso | S. Corzine | N. Yu | F. Capasso | D. Bour | F. Tittel | R. Lewicki | G. Wysocki | M. Belkin | G. Hofler | L. Diehl | M. Troccoli | L. Diehl | D.P. Bour | G. Hofler | M.A. Belkin | S.W. Corzine | R. Lewicki | C.Y. Wang | F.K. Tittel | C.Y. Wang | Nanfang Yu | F. Capasso | L. Diehl | D. Bour | Christine Y. Wang | G. Wysocki
[1] Federico Capasso,et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 μm and 24 μm wavelengths , 2001 .
[2] Scott W. Corzine,et al. Metalorganic vapor-phase epitaxy of room-temperature, low-threshold InGaAs/AlInAs quantum cascade lasers , 2004 .
[3] Scott W. Corzine,et al. High-power quantum cascade lasers grown by low-pressure metal organic vapor-phase epitaxy operating in continuous wave above 400K , 2006 .
[4] Manijeh Razeghi,et al. High-power λ∼9.5μm quantum-cascade lasers operating above room temperature in continuous-wave mode , 2006 .
[5] A. Kung,et al. Photoacoustic Trace Detection of Methane Using Compact Solid-State Lasers† , 2000 .
[6] Frank K. Tittel,et al. Ultrasensitive gas detection by quartz-enhanced photoacoustic spectroscopy in the fundamental molecular absorption bands region , 2005 .
[7] Carlo Sirtori,et al. Short wavelength ( 3:4 m) quantum cascade laser based on strain-compensated InGaAs/AllnAs , 1998 .
[8] H. Risken,et al. Self‐Pulsing in Lasers , 1968 .
[9] Federico Capasso,et al. Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. , 2000, Science.
[10] G. Dehlinger,et al. Intersubband electroluminescence from silicon-based quantum cascade structures. , 2000, Science.
[11] Baylor Plaza. Quantum cascade laser-based integrated cavity output spectroscopy of exhaled nitric oxide , 2006 .
[12] T. J. Watson,et al. Apertureless near-field optical microscope , 1999 .
[13] A. Kosterev,et al. Ammonia detection by use of quartz-enhanced photoacoustic spectroscopy with a near-IR telecommunication diode laser. , 2004, Applied optics.
[14] Rui Q. Yang,et al. Formaldehyde sensor using interband cascade laser based quartz-enhanced photoacoustic spectroscopy , 2004 .
[15] Applied Physics,et al. Photoacoustic phase shift as a chemically selective spectroscopic parameter , 2022 .
[16] H. Ambrosius,et al. Kink power in weakly index guided semiconductor lasers , 1995 .
[17] A. Kosterev,et al. Influence of molecular relaxation dynamics on quartz-enhanced photoacoustic detection of CO2 at λ =2 μm , 2006 .
[18] Scott W. Corzine,et al. Low-threshold continuous-wave operation of quantum-cascade lasers grown by metalorganic vapor phase epitaxy , 2004 .
[19] David Chapman,et al. Widely tunable single-mode quantum cascade laser source for mid-infrared spectroscopy , 2007 .
[20] Mattias Beck,et al. Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.
[21] A. Kosterev,et al. Quartz-enhanced photoacoustic spectroscopy. , 2002, Optics letters.
[22] Vincenzo Spagnolo,et al. Simultaneous measurement of the electronic and lattice temperatures in GaAs/Al0.45Ga0.55As quantum-cascade lasers: Influence on the optical performance , 2004 .
[23] M. Beck,et al. Bound-to-continuum and two-phonon resonance, quantum-cascade lasers for high duty cycle, high-temperature operation , 2002 .
[24] Benjamin G. Lee,et al. Pulsed- and continuous-mode operation at high temperature of strained quantum-cascade lasers grown by metalorganic vapor phase epitaxy , 2006 .
[25] F. Capasso,et al. Quantum Cascade Lasers , 2002 .
[26] Christian Pflugl,et al. Intra-cavity absorption spectroscopy with narrow-ridge microfluidic quantum cascade lasers. , 2007, Optics express.
[27] Bret D. Cannon,et al. Gas-phase photoacoustic sensor at 8.41 μm using quartz tuning forks and amplitude-modulated quantum cascade lasers , 2006 .
[28] P. Collot,et al. Quantum Cascade Lasers , 1997, CLEO/Europe Conference on Lasers and Electro-Optics.
[29] K. Namjou,et al. Determination of exhaled nitric oxide distributions in a diverse sample population using tunable diode laser absorption spectroscopy , 2006 .
[30] Scott W. Corzine,et al. High-temperature continuous wave operation of strain-balanced quantum cascade lasers grown by metal organic vapor-phase epitaxy , 2006 .
[31] A. Kosterev,et al. Chemical sensors based on quantum cascade lasers , 2002 .
[32] Federico Capasso,et al. Room temperature continuous-wave operation of quantum-cascade lasers grown by metal organic vapour phase epitaxy , 2005 .
[33] F. Capasso,et al. Cavity ringdown spectroscopic detection of nitric oxide with a continuous-wave quantum-cascade laser. , 2001, Applied optics.
[34] H. Le,et al. Broadband, continuous, and fine-tune properties of external-cavity thermoelectric-stabilized mid-infrared quantum-cascade lasers. , 2003, Applied optics.
[35] E. Gini,et al. Room temperature continuous wave operation of quantum cascade lasers , 2002, IEEE 18th International Semiconductor Laser Conference.
[36] Trace Humidity Sensor Based on Quartz-Enhanced Photoacoustic Spectroscopy , 2006 .
[37] M. Razeghi,et al. Beam steering in high-power CW quantum-cascade lasers , 2005, IEEE Journal of Quantum Electronics.
[38] G. Berden,et al. Cavity ring-down spectroscopy: Experimental schemes and applications , 2000 .
[39] V. Baev,et al. Laser intracavity absorption spectroscopy , 1999 .
[40] Federico Capasso,et al. Ultra-broadband semiconductor laser , 2002, Nature.
[41] Frank K. Tittel,et al. Mid-Infrared Laser Applications in Spectroscopy , 2003 .
[42] Federico Capasso,et al. High-power λ≈8 μm quantum cascade lasers with near optimum performance , 1998 .
[43] A. Krysa,et al. Room-temperature operation of InGaAs/AlInAs quantum cascade lasers grown by metalorganic vapor phase epitaxy , 2003 .
[44] Frank K. Tittel,et al. Widely tunable mode-hop free external cavity quantum cascade laser for high resolution spectroscopic applications , 2005 .
[45] J. Faist,et al. Quantum Cascade Laser , 1994, Science.
[46] David D. Nelson,et al. Comparison of cw and pulsed operation with a TE-cooled quantum cascade infrared laser for detection of nitric oxide at 1900 cm-1 , 2006 .
[47] Direct imaging of a laser mode via midinfrared near-field microscopy , 2007 .
[48] A. Kosterev,et al. Spectroscopic trace-gas sensor with rapidly scanned wavelengths of a pulsed quantum cascade laser for in situ NO monitoring of industrial exhaust systems , 2005 .
[49] S. Corzine,et al. Coherent instabilities in a semiconductor laser with fast gain recovery , 2007 .
[50] F. Capasso,et al. Cavity ringdown spectroscopy of NO with a cw single frequency quantum cascade laser , 2001, CLEO 2001.
[51] Dirk Richter,et al. Ultra-high precision mid-IR spectrometer I: Design and analysis of an optical fiber pumped difference-frequency generation source , 2006 .
[52] F. K. Tittel,et al. 7 Tunable infrared laser spectroscopy , 2002 .
[53] M. Beck,et al. Far infrared quantum-cascade lasers based on a bound-to-continuum transition , 2001, Conference on Lasers and Electro-Optics, 2003. CLEO '03..
[54] Hermann Haken,et al. Quantum theory of light propagation in a fluctuating laser-active medium , 1968 .
[55] T. L. Myers,et al. Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission , 2002 .
[56] Fritz Keilmann,et al. Enhanced dielectric contrast in scattering-type scanning near-field optical microscopy , 2000 .
[57] Manijeh Razeghi,et al. High-temperature, high-power, continuous-wave operation of buried heterostructure quantum-cascade lasers , 2004 .
[58] Roland Teissier,et al. Very short wavelength „ =3.1–3.3 m... quantum cascade lasers , 2006 .
[59] F. Capasso,et al. Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation , 2007 .
[60] Jérôme Faist,et al. External cavity quantum cascade laser , 2010 .
[61] GaAs–based quantum cascade lasers , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[62] A. Kosterev,et al. Applications of quartz tuning forks in spectroscopic gas sensing , 2005 .
[63] Mattias Beck,et al. Broadband tuning of external cavity bound-to-continuum quantum-cascade lasers , 2004 .
[64] A. Kosterev,et al. Impact of humidity on quartz-enhanced photoacoustic spectroscopy based detection of HCN , 2006 .
[65] Federico Capasso,et al. Quantum Cascade Surface-Emitting Photonic Crystal Laser , 2003, Science.
[66] J. Faist,et al. Quantum cascade laser with plasmon‐enhanced waveguide operating at 8.4 μm wavelength , 1995 .
[67] A. Boccara,et al. Infrared-reflection-mode near-field microscopy using an apertureless probe with a resolution of lambda/600. , 1996, Optics letters.
[68] F. Capasso,et al. Recent progress in quantum cascade lasers and applications , 2001 .
[69] P. Hess,et al. Photoacoustic measurement of N2O concentrations in ambient air with a pulsed optical parametric oscillator , 2006 .
[70] D. Sivco,et al. Electronic anti-Stokes-Raman emission in quantum-cascade lasers , 2005 .
[71] Yargo Bonetti,et al. Room-temperature, continuous-wave, single-mode quantum-cascade lasers at λ≃5.4μm , 2005 .
[72] Frank K Tittel,et al. Mid-infrared quantum cascade laser based off-axis integrated cavity output spectroscopy for biogenic nitric oxide detection. , 2004, Applied optics.
[73] Damien Weidmann,et al. Application of a widely electrically tunable diode laser to chemical gas sensing with quartz-enhanced photoacoustic spectroscopy. , 2004, Optics letters.
[74] E. Verpoorte. Chip vision-optics for microchips. , 2003, Lab on a chip.
[75] Quasiphase matching of second-harmonic generation in quantum cascade lasers by Stark shift of electronic resonances , 2006 .
[76] Vincenzo Spagnolo,et al. Thermal modeling of GaInAs∕AlInAs quantum cascade lasers , 2006 .
[77] Christelle Monat,et al. Integrated optofluidics: A new river of light , 2007 .
[78] D. Erickson,et al. Integrated microfluidic devices , 2004 .
[79] E. Linfield,et al. Terahertz semiconductor-heterostructure laser , 2002, Nature.
[80] D. Psaltis,et al. Developing optofluidic technology through the fusion of microfluidics and optics , 2006, Nature.
[81] David I. Rosen,et al. Integrated cavity output spectroscopy measurements of NO levels in breath with a pulsed room-temperature QCL , 2005 .
[82] Carlo Sirtori,et al. Resonant tunneling in quantum cascade lasers , 1998 .
[83] O. Tadanaga,et al. Broadband difference frequency generation around phase-match singularity , 2005 .