Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicene

Scanning tunneling microscopy (STM) and ab initio calculations based on density functional theory (DFT) were used to study the self-aligned silicon nanoribbons on Ag(110) with honeycomb, graphene-like structure. The silicon honeycombs structure on top of the silver substrate is clearly observed by STM, while the DFT calculations confirm that the Si atoms adopt spontaneously this new silicon structure.

[1]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[2]  G. G. Guzmán-Verri,et al.  Electronic structure of silicon-based nanostructures , 2007, 1107.0075.

[3]  Ronaldo Mota,et al.  Ab initio calculations for a hypothetical material: Silicon nanotubes , 2000 .

[4]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[5]  F. Ronci,et al.  Formation of a one-dimensional grating at the molecular scale by self-assembly of straight silicon nanowires , 2007 .

[6]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[7]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[8]  Susumu Yamada,et al.  Experimental Evidence for Nanostructural Tube Formation of Silicon Atoms , 2006 .

[9]  F. J. Himpsel,et al.  Microscopic structure of the SiO 2 /Si interface , 1988 .

[10]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[11]  S. Lebègue,et al.  Electronic structure of two-dimensional crystals from ab-initio theory , 2009, 0901.0440.

[12]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[13]  C. Balasubramanian,et al.  Experimental imaging of silicon nanotubes , 2005 .

[14]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[15]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[16]  M. E. Dávila,et al.  Self-aligned silicon quantum wires on Ag(110) , 2005 .

[17]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[18]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[19]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[20]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[21]  S. Vizzini,et al.  Growth of straight, atomically perfect, highly metallic silicon nanowires with chiral asymmetry. , 2008, Nano letters.

[22]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[23]  E. Akturk,et al.  Two- and one-dimensional honeycomb structures of silicon and germanium. , 2008, Physical review letters.

[24]  G. He Atomic structure of Si nanowires on Ag(110): A density-functional theory study , 2006 .

[25]  S. Vizzini,et al.  Burning match oxidation process of silicon nanowires screened at the atomic scale. , 2008, Nano letters.