A First Estimate of the Baryonic Mass Function of Galaxies

We estimate the baryonic (stellar+cold gas) mass function of galaxies in the local universe by assigning a complete sample of Two Micron All Sky Survey and Sloan Digital Sky Survey galaxies a gas fraction based on a statistical sample of the entire population, under the assumption of a universally applicable stellar initial mass function. The baryonic mass function is similar to the stellar mass function at the high-mass end and has a reasonably steep faint-end slope owing to the typically high cold gas fractions and low stellar mass-to-light ratios characteristic of low-mass galaxies. The Schechter function fit parameters are *h-3 = 0.0108(6) Mpc-3 log M-1, M*h2 = 5.3(3) × 1010 M☉, and α = -1.21(5), with formal error estimates given in parentheses. We show that the H I and H2 mass functions derived using this indirect route are in agreement with direct estimates, validating our indirect method. Integrating under the baryonic mass function and incorporating all sources of uncertainty, we find that the baryonic (stellar+cold gas) mass density implied by this estimate is Ωcold baryonh = 2.4 × 10-3, or 8% of the big bang nucleosynthesis expectation.

[1]  K. Freeman,et al.  The Baryonic Tully-Fisher Relation , 1999, The Astrophysical journal.

[2]  The stellar populations of early-type galaxies in the Fornax cluster , 2000 .

[3]  E. al.,et al.  The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.

[4]  C. Kochanek,et al.  The K-Band Galaxy Luminosity Function , 2000, astro-ph/0011456.

[5]  H. Ferguson,et al.  Lyman Break Galaxies and the Reionization of the Intergalactic Medium , 2002, astro-ph/0204198.

[6]  G. Gilmore,et al.  The distribution of low-mass stars in the Galactic disc , 1993 .

[7]  J. Loveday The K-band luminosity function of nearby field galaxies , 1999, astro-ph/9907179.

[8]  E. Bell,et al.  Stellar mass-to-light ratios and the Tully-Fisher relation , 2000, astro-ph/0011493.

[9]  J. Young,et al.  CO Luminosity Functions for Far-Infrared- and B-Band-selected Galaxies and the First Estimate for ΩHi + H2 , 2002, astro-ph/0209413.

[10]  R. Kennicutt The Rate of star formation in normal disk galaxies , 1983 .

[11]  V. Narayanan,et al.  Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data , 2001, astro-ph/0107201.

[12]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[13]  Alexander S. Szalay,et al.  Sloan digital sky survey: Early data release , 2002 .

[14]  R. Ellis,et al.  The 2dF Galaxy Redshift Survey: the dependence of galaxy clustering on luminosity and spectral type , 2001, astro-ph/0112043.

[15]  M. Fukugita,et al.  THE COSMIC BARYON BUDGET , 1997, astro-ph/9712020.

[16]  Jessica L. Rosenberg,et al.  The Arecibo Dual-Beam Survey: The H I Mass Function of Galaxies , 2001, astro-ph/0111004.

[17]  The Deuterium to Hydrogen Abundance Ratio toward a Fourth QSO: HS 0105+1619 , 2000, astro-ph/0011179.

[18]  Cosmological origin of the lowest metallicity halo stars , 2000, astro-ph/0010024.

[19]  The stellar populations of spiral galaxies , 1999, astro-ph/9909402.

[20]  J. E. Felten Study of the luminosity function for field galaxies , 1977 .

[21]  Paolo Persi,et al.  The Impact of Large Scale Near-IR Sky Surveys , 1997 .

[22]  P. Knezek,et al.  THE RATIO OF MOLECULAR TO ATOMIC GAS IN SPIRAL GALAXIES AS A FUNCTION OF MORPHOLOGICAL TYPE , 1989 .

[23]  C. Baugh,et al.  Hierarchical galaxy formation , 2000, astro-ph/0007281.

[24]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[25]  The faint end of the galaxy luminosity function , 2002, astro-ph/0205060.

[26]  V. Narayanan,et al.  Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Main Galaxy Sample , 2002, astro-ph/0206225.