RAS oncogenes: the first 30 years

[1]  M. Malumbres,et al.  Mice deficient for N-ras: impaired antiviral immune response and T-cell function. , 2003, Cancer research.

[2]  T. Bivona,et al.  Ras pathway signaling on endomembranes. , 2003, Current opinion in cell biology.

[3]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.

[4]  C. Der,et al.  Distinct requirements for Ras oncogenesis in human versus mouse cells. , 2002, Genes & development.

[5]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[6]  T. Jacks,et al.  Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. , 2001, Genes & development.

[7]  H. Varmus,et al.  Induction and apoptotic regression of lung adenocarcinomas by regulation of a K-Ras transgene in the presence and absence of tumor suppressor genes. , 2001, Genes & development.

[8]  T. Jacks,et al.  Somatic activation of the K-ras oncogene causes early onset lung cancer in mice , 2001, Nature.

[9]  M. Malumbres,et al.  Targeted Genomic Disruption of H-ras and N-ras, Individually or in Combination, Reveals the Dispensability of Both Loci for Mouse Growth and Development , 2001, Molecular and Cellular Biology.

[10]  Phillip T. Hawkins,et al.  Crystal Structure and Functional Analysis of Ras Binding to Its Effector Phosphoinositide 3-Kinase γ , 2000, Cell.

[11]  Kenji Nakamura,et al.  Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis , 2000, Oncogene.

[12]  C. Der,et al.  The Ras branch of small GTPases: Ras family members don't fall far from the tree. , 2000, Current opinion in cell biology.

[13]  P. Hawkins,et al.  Crystal structure and functional analysis of Ras binding to its effector phosphoinositide 3-kinase gamma. , 2000, Cell.

[14]  L. Chin,et al.  Essential role for oncogenic Ras in tumour maintenance , 1999, Nature.

[15]  W. Kabsch,et al.  Guanosine triphosphatase stimulation of oncogenic Ras mutants. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[16]  John Kuriyan,et al.  The structural basis of the activation of Ras by Sos , 1998, Nature.

[17]  Lan Huang,et al.  Structural basis for the interaction of Ras with RaIGDS , 1998, Nature Structural Biology.

[18]  J. Massagué TGF-beta signal transduction. , 1998, Annual review of biochemistry.

[19]  R. Kucherlapati,et al.  K-ras is an essential gene in the mouse with partial functional overlap with N-ras. , 1997, Genes & development.

[20]  Jun Miyoshi,et al.  K-Ras is essential for the development of the mouse embryo , 1997, Oncogene.

[21]  Lan Huang,et al.  Three-dimensional structure of the Ras-interacting domain of RalGDS , 1997, Nature Structural Biology.

[22]  W. Kabsch,et al.  The Ras-RasGAP complex: structural basis for GTPase activation and its loss in oncogenic Ras mutants. , 1997, Science.

[23]  T. Nagasu,et al.  Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. , 1995, Cancer research.

[24]  A. Kral,et al.  Inhibition of farnesyltransferase induces regression of mammary and salivary carcinomas in ras transgenic mice , 1995, Nature Medicine.

[25]  R. Kucherlapati,et al.  The murine N-ras gene is not essential for growth and development. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Bischoff,et al.  Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras, and Rap. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  S. Fields,et al.  Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  S. Demo,et al.  ralGDS family members interact with the effector loop of ras p21 , 1994, Molecular and cellular biology.

[29]  Michael J. Fry,et al.  Phosphatidylinositol-3-OH kinase direct target of Ras , 1994, Nature.

[30]  A. Kazlauskas Receptor tyrosine kinases and their targets. , 1994, Current opinion in genetics & development.

[31]  P. Warne,et al.  Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro , 1993, Nature.

[32]  S. Elledge,et al.  Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1 , 1993, Nature.

[33]  Jonathan A. Cooper,et al.  Mammalian Ras interacts directly with the serine/threonine kinase raf , 1993, Cell.

[34]  M. Weber,et al.  Complexes of Ras.GTP with Raf-1 and mitogen-activated protein kinase kinase. , 1993, Science.

[35]  Paul W. Sternberg,et al.  C. elegans lin-45 raf gene participates in let-60 ras-stimulated vulval differentiation , 1993, Nature.

[36]  F. McCormick How receptors turn Ras on , 1993, Nature.

[37]  F. McCormick Signal transduction. How receptors turn Ras on. , 1993, Nature.

[38]  T. Takenawa,et al.  Cloning of ASH, a ubiquitous protein composed of one Src homology region (SH) 2 and two SH3 domains, from human and rat cDNA libraries. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[39]  A. Ullrich,et al.  The SH2 and SH3 domain-containing protein GRB2 links receptor tyrosine kinases to ras signaling , 1992, Cell.

[40]  Peng Li,et al.  Identification of a mammalian gene structurally and functionally related to the CDC25 gene of Saccharomyces cerevisiae. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[41]  B. Neel,et al.  Molecular cloning of cDNAs encoding a guanine-nucleotide-releasing factor for Ras p21 , 1992, Nature.

[42]  D. Bowtell,et al.  Identification of murine homologues of the Drosophila son of sevenless gene: potential activators of ras. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  E. Martegani,et al.  Cloning by functional complementation of a mouse cDNA encoding a homologue of CDC25, a Saccharomyces cerevisiae RAS activator. , 1992, The EMBO journal.

[44]  H. Horvitz,et al.  C. elegans cell-signalling gene sem-5 encodes a protein with SH2 and SH3 domains , 1992, Nature.

[45]  P. Demoly,et al.  [Transgenic mice]. , 1992, Annales de dermatologie et de venereologie.

[46]  E. Lapetina,et al.  Association of p21ras with phosphatidylinositol 3-kinase. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[47]  S H Kim,et al.  Crystal structures at 2.2 A resolution of the catalytic domains of normal ras protein and an oncogenic mutant complexed with GDP. , 1991, Journal of molecular biology.

[48]  M. Wigler,et al.  The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins , 1990, Cell.

[49]  P. O’Connell,et al.  The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21 , 1990, Cell.

[50]  W. Schafer,et al.  Enzymatic coupling of cholesterol intermediates to a mating pheromone precursor and to the ras protein. , 1990, Science.

[51]  Margaret Robertson,et al.  The neurofibromatosis type 1 gene encodes a protein related to GAP , 1990, Cell.

[52]  W. Kabsch,et al.  Three-dimensional structures of H-ras p21 mutants: Molecular basis for their inability to function as signal switch molecules , 1990, Cell.

[53]  R. Weinberg,et al.  Identification of a nucleotide exchange-promoting activity for p21ras. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[54]  B. Brownstein,et al.  Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. , 1990, Science.

[55]  P. Casey,et al.  Inhibition of purified p21 ras farnesyl:protein transferase by Cys-AAX tetrapeptides , 1990, Cell.

[56]  Steven C. Almo,et al.  Time-resolved X-ray crystallographic study of the conformational change in Ha-Ras p21 protein on GTP hydrolysis , 1990, Nature.

[57]  A. Wolfman,et al.  A cytosolic protein catalyzes the release of GDP from p21ras. , 1990, Science.

[58]  W. Kabsch,et al.  Structure of the guanine-nucleotide-binding domain of the Ha-ras oncogene product p21 in the triphosphate conformation , 1989, Nature.

[59]  J. L. Bos,et al.  ras oncogenes in human cancer: a review. , 1989, Cancer research.

[60]  W. Schafer,et al.  Genetic and pharmacological suppression of oncogenic mutations in ras genes of yeast and humans. , 1989, Science.

[61]  C. Marshall,et al.  All ras proteins are polyisoprenylated but only some are palmitoylated , 1989, Cell.

[62]  G. A. Martin,et al.  Molecular cloning of two types of GAP complementary DNA from human placenta. , 1988, Science.

[63]  Irving S. Sigal,et al.  Cloning of bovine GAP and its interaction with oncogenic ras p21 , 1988, Nature.

[64]  D. Shibata,et al.  Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes , 1988, Cell.

[65]  S H Kim,et al.  Three-dimensional structure of an oncogene protein: catalytic domain of human c-H-ras p21. , 1988, Science.

[66]  F. McCormick,et al.  A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. , 1987, Science.

[67]  S. Rodenhuis,et al.  Mutational activation of the K-ras oncogene. A possible pathogenetic factor in adenocarcinoma of the lung. , 1987, The New England journal of medicine.

[68]  P. Leder,et al.  Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenes in vivo , 1987, Cell.

[69]  R. Palmiter,et al.  Pancreatic neoplasia induced by ras expression in acinar cells of transgenic mice , 1987, Cell.

[70]  M. Wigler,et al.  The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway , 1987, Cell.

[71]  L. C. Robinson,et al.  CDC25: a component of the RAS-adenylate cyclase pathway in Saccharomyces cerevisiae. , 1987, Science.

[72]  William E. Grizzle,et al.  Detection of high incidence of K-ras oncogenes during human colon tumorigenesis , 1987, Nature.

[73]  B. Vogelstein,et al.  Prevalence of ras gene mutations in human colorectal cancers , 1987, Nature.

[74]  J. Miller,et al.  Activating mutations of the c-Ha-ras protooncogene in chemically induced hepatomas of the male B6C3 F1 mouse. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[75]  Mark R. Smith,et al.  Requirement for c-ras proteins during viral oncogene transformation , 1986, Nature.

[76]  M. Wigler,et al.  RAS proteins can induce meiosis in xenopus oocytes , 1985, Cell.

[77]  P. Duesberg Activated proto-onc genes: sufficient or necessary for cancer? , 1985, Science.

[78]  M. Wigler,et al.  In yeast, RAS proteins are controlling elements of adenylate cyclase , 1985, Cell.

[79]  Mark R. Smith,et al.  Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells , 1985, Nature.

[80]  M. Barbacid,et al.  Direct mutagenesis of Ha-ras-1 oncogenes by N-nitroso-N-methylurea during initiation of mammary carcinogenesis in rats , 1985, Nature.

[81]  J B Hurley,et al.  Homologies between signal transducing G proteins and ras gene products. , 1984, Science.

[82]  J. Feramisco,et al.  The product of ras is a GTPase and the T24 oncogenic mutant is deficient in this activity , 1984, Nature.

[83]  J B Gibbs,et al.  Intrinsic GTPase activity distinguishes normal and oncogenic ras p21 molecules. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[84]  D. Goeddel,et al.  Comparative biochemical properties of normal and activated human ras p21 protein , 1984, Nature.

[85]  D. Lowy,et al.  The p21 ras C-terminus is required for transformation and membrane association , 1984, Nature.

[86]  J. Feramisco,et al.  Epidermal growth factor stimulates guanine nucleotide binding activity and phosphorylation of ras oncogene proteins , 1984, Nature.

[87]  M. Barbacid,et al.  Malignant activation of a K-ras oncogene in lung carcinoma but not in normal tissue of the same patient. , 1984, Science.

[88]  Allan Balmain,et al.  Activation of the mouse cellular Harvey-ras gene in chemically induced benign skin papillomas , 1984, Nature.

[89]  A. Pellicer,et al.  A molecular approach to leukemogenesis: mouse lymphomas contain an activated c-ras oncogene. , 1984, Proceedings of the National Academy of Sciences of the United States of America.

[90]  R. Weinberg,et al.  Presence of a Kirsten murine sarcoma virus ras oncogene in cells transformed by 3-methylcholanthrene , 1983, Molecular and cellular biology.

[91]  M. Barbacid,et al.  Induction of mammary carcinomas in rats by nitroso-methylurea involves malignant activation of H-ras-1 locus by single point mutations , 1983, Nature.

[92]  R. Newbold,et al.  Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene , 1983, Nature.

[93]  H. Ruley Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture , 1983, Nature.

[94]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[95]  C. Marshall,et al.  Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1 , 1983, Nature.

[96]  A. Balmain,et al.  Mouse skin carcinomas induced in vivo by chemical carcinogens have a transforming Harvey-ras oncogene , 1983, Nature.

[97]  R. Muschel,et al.  The human c-ras1H oncogene: a mutation in normal and neoplastic tissue from the same patient. , 1983, Science.

[98]  M. Wigler,et al.  Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[99]  Kenji Shimizu,et al.  Activation of the T24 bladder carcinoma transforming gene is linked to a single amino acid change , 1982, Nature.

[100]  Eugenio Santos,et al.  A point mutation is responsible for the acquisition of transforming properties by the T24 human bladder carcinoma oncogene , 1982, Nature.

[101]  Cori Bargmann,et al.  Mechanism of activation of a human oncogene , 1982, Nature.

[102]  M. Barbacid,et al.  T24 human bladder carcinoma oncogene is an activated form of the normal human homologue of BALB- and Harvey-MSV transforming genes , 1982, Nature.

[103]  R. Weinberg,et al.  Human EJ bladder carcinoma oncogene is homologue of Harvey sarcoma virus ras gene , 1982, Nature.

[104]  C. Der,et al.  Transforming genes of human bladder and lung carcinoma cell lines are homologous to the ras genes of Harvey and Kirsten sarcoma viruses. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[105]  M. Barbacid,et al.  Oncogenes in human tumor cell lines: molecular cloning of a transforming gene from human bladder carcinoma cells. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[106]  R. Weinberg,et al.  Isolation of a transforming sequence from a human bladder carcinoma cell line , 1982, Cell.

[107]  M. Wigler,et al.  Isolation and preliminary characterization of a human transforming gene from T24 bladder carcinoma cells , 1982, Nature.

[108]  M. Wigler,et al.  Human-tumor-derived cell lines contain common and different transforming genes , 1981, Cell.

[109]  M. Gonda,et al.  The p21 src genes of Harvey and Kirsten sarcoma viruses originate from divergent members of a family of normal vertebrate genes , 1981, Nature.

[110]  N. Tsuchida,et al.  Structure and Functions of the Kirsten Murine Sarcoma Virus Genome: Molecular Cloning of Biologically Active Kirsten Murine Sarcoma Virus DNA , 1981, Journal of virology.

[111]  R. Weinberg,et al.  Transforming genes of carcinomas and neuroblastomas introduced into mouse fibroblasts , 1981, Nature.

[112]  I. Pastan,et al.  Localization of the src gene product of the Harvey strain of MSV to plasma membrane of transformed cells by electron microscopic immunocytochemistry , 1980, Cell.

[113]  U. Rapp,et al.  Generation of oncogenic mouse type C viruses: in vitro selection of carcinoma-inducing variants. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[114]  R. Weinberg,et al.  Passage of phenotypes of chemically transformed cells via transfection of DNA and chromatin. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[115]  E. Scolnick,et al.  Guanine nucleotide-binding activity as an assay for src protein of rat-derived murine sarcoma viruses. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[116]  D. Lowy,et al.  Molecular cloning of the Harvey sarcoma virus closed circular DNA intermediates: initial structural and biological characterization , 1979, Journal of virology.

[117]  E. Scolnick,et al.  p21 of Kirsten murine sarcoma virus is thermolabile in a viral mutant temperature sensitive for the maintenance of transformation , 1979, Journal of virology.

[118]  E. Scolnick,et al.  Identification of a sarcoma virus-coded phosphoprotein in nonproducer cells transformed by Kirsten or Harvey murine sarcoma virus. , 1979, Virology.

[119]  M. Wigler,et al.  Biochemical transfer of single-copy eucaryotic genes using total cellular DNA as donor , 1978, Cell.

[120]  R. Huebner,et al.  In vitro isolation of stable rat sarcoma viruses. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[121]  E. Scolnick,et al.  In vitro translation of Harvey murine sarcoma virus RNA , 1977, Journal of virology.

[122]  R. Huebner,et al.  Naturally occurring sarcoma virus of the BALB/cCr mouse. , 1974, Journal of the National Cancer Institute.

[123]  E. Scolnick,et al.  Studies on the Nucleic Acid Sequences of Kirsten Sarcoma Virus: a Model for Formation of a Mammalian RNA-Containing Sarcoma Virus , 1973, Journal of virology.

[124]  W. Kirsten,et al.  Morphologic responses to a murine erythroblastosis virus. , 1967, Journal of the National Cancer Institute.

[125]  J. J. Harvey An Unidentified Virus which causes the Rapid Production of Tumours in Mice , 1964, Nature.