[Changes of the Immunophenotypic Spectrum and the Enzymatic Profile of Peripheral Blood Lymphocytes in Infants with Hypertrophy of the Pharyngeal Tonsil].

OBJECTIVE to study immunophenotype and NAD- and NAD(P)-dependent dehydrogenase of blood lymphocytes activity indicators in children with hypertrophy of the pharyngeal tonsils (HPT). METHODS 57 children aged 1-3 years with HPT were examined. The focus group included 35 healthy children of the similar age. The number of CD₃⁺-, CD₄⁺-, CD₈⁺-, CD₁₆⁺/₅₆⁺-, CD₁₉⁺-cells in the blood was determined by flow cytometry. The activity of NAD(P)-dependent dehydrogenase was studied by the method of A. Savchenko and coauth. (1989). RESULTS The changes of immunophenotypic spectrum of peripheral blood lymphocytes in infants with HPT have been revealed. The increase of ribose-5-phosphate and NADN-dependent reactions of macromolecular synthesis, the reduction of malataspartat shunt role in cell energy, the reduction of anaerobic lactate dehydrogenase reaction, the compensatory increase in the glycerol-3-phosphate dehydrogenase activity, the high substrate flow of the citric acid cycle and the reduced level of glutathione have been fixed. The correlation analysis has showed increase in the number of correlations between indicators of investigated oxidoreductase activity in blood lymphocytes in children with HPT and the high level of correlation between the metabolic reactions of the mitochondrial compartment. CONCLUSION the change of immunophenotype, enzymatic activity, correlation pattern of connection between intracellular enzymes of peripheral blood lymphocytes have been revealed in children aged 1-3 years with HPT.

[1]  A. A. Mironova ЗАГРЯЗНЕНИЕ АТМОСФЕРНОГО ВОЗДУХА В ГОРОДАХ НАБЕРЕЖНОЧЕЛНИНСКОЙ АГЛОМЕРАЦИИ , 2015 .

[2]  С. Б. Безшапочный,et al.  Механизмы местной защиты слизистой оболочки полости носа и околоносовых пазух , 2013 .

[3]  Л. Ф. Азнабаева Иммунологические аспекты воспаления верхних дыхательных путей , 2012 .

[4]  R. Stanton Glucose‐6‐phosphate dehydrogenase, NADPH, and cell survival , 2012, IUBMB life.

[5]  D. Abbrescia,et al.  Malate-aspartate shuttle and exogenous NADH/cytochrome c electron transport pathway as two independent cytosolic reducing equivalent transfer systems. , 2012, Archives of biochemistry and biophysics.

[6]  K. Storey,et al.  Structural and Functional Properties of Glycerol-3-Phosphate Dehydrogenase from a Mammalian Hibernator , 2012, The Protein Journal.

[7]  N. Malys,et al.  What is the true enzyme kinetics in the biological system? An investigation of macromolecular crowding effect upon enzyme kinetics of glucose-6-phosphate dehydrogenase. , 2011, Biochemical and biophysical research communications.

[8]  H. Hung,et al.  Functional Roles of the Tetramer Organization of Malic Enzyme* , 2009, The Journal of Biological Chemistry.

[9]  J. García,et al.  Role of nuclear glutathione as a key regulator of cell proliferation. , 2009, Molecular aspects of medicine.

[10]  Феликс Абрамович Бляхман,et al.  МЕСТО ЛОЖНЫХ СУХОЖИЛИЙ В ЛЕВОМ ЖЕЛУДОЧКЕ В СИСТЕМЕ ПОДХОДОВ К ДИАГНОСТИКЕ СИНДРОМА ДИСПЛАЗИИ СОЕДИНИТЕЛЬНОЙ ТКАНИ У ДЕТЕЙ , 2017 .

[11]  Е. В. Москвичев Сравнительная характеристика атрофии тимуса при экспериментальном канцерогенезе и возрастной инволюции (морфологическое и иммуногистохимическое исследование) , 2013 .

[12]  Цыпленкова Светлана Эвальдовна,et al.  Клинико-иммунологические особенности аллергических бронхолегочных заболеваний у детей с грибковой сенсибилизацией , 2012 .

[13]  N. N. Ulusu,et al.  In vitro effects of imatinib on glucose-6-phosphate dehydrogenase and glutathione reductase. , 2011, Folia biologica.

[14]  Xin Yu,et al.  Regulation of cytosolic and mitochondrial oxidation via malate-aspartate shuttle: an observation using dynamic ¹³C NMR spectroscopy. , 2011, Advances in Experimental Medicine and Biology.

[15]  A. Böyum Isolation and removal of lymphocytes from bone marrow of rats and guinea-pigs. , 1968, Scandinavian journal of clinical and laboratory investigation. Supplementum.