A modular system for robust positioning using feedback from stereo vision

This paper introduces a modular framework for robot motion control using stereo vision. The approach is based on a small number of generic motion control operations referred to as primitive skills. Each primitive skill uses visual feedback to enforce a specific task-space kinematic constraint between a robot end-effector and a set of target features. By observing both the end-effector and target features, primitive skills are able to position with an accuracy that is independent of errors in hand-eye calibration. Furthermore, primitive skills are easily combined to form more complex kinematic constraints as required by different applications. These control laws have been integrated into a system that performs tracking and control on a single processor at real-time rates. Experiments with this system have shown that it is extremely accurate, and that it is insensitive to camera calibration error. The system has been applied to a number of example problems, showing that modular, high precision, vision-based motion control is easily achieved with off-the-shelf hardware.

[1]  C. S. George Lee,et al.  Weighted selection of image features for resolved rate visual feedback control , 1991, IEEE Trans. Robotics Autom..

[2]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[3]  Roberto Cipolla,et al.  Uncalibrated stereo hand-eye coordination , 1994, Image Vis. Comput..

[4]  Fumio Miyazaki,et al.  Manipulator Control by Visual Ser-voing with the Stereo Vision , 1993 .

[5]  W. Sardha Wijesoma,et al.  Eye-to-Hand Coordination for Vision-Guided Robot Control Applications , 1993, Int. J. Robotics Res..

[6]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[7]  E. Mjolsness,et al.  Online computation of exterior orientation with application to hand-eye calibration , 1996 .

[8]  Armando Fox,et al.  Exploiting visual constraints in the synthesis of uncertainty-tolerant motion plans , 1995, IEEE Trans. Robotics Autom..

[9]  Konstantinos A. Tarabanis,et al.  A survey of sensor planning in computer vision , 1995, IEEE Trans. Robotics Autom..

[10]  Gregory D. Hager,et al.  X Vision: A Portable Substrate for Real-Time Vision Applications , 1998, Comput. Vis. Image Underst..

[11]  J. Munkres Analysis On Manifolds , 1991 .

[12]  Patrick Rives,et al.  A new approach to visual servoing in robotics , 1992, IEEE Trans. Robotics Autom..

[13]  Gregory D. Hager,et al.  Robot hand-eye coordination based on stereo vision , 1995 .

[14]  Gene F. Franklin,et al.  Feedback Control of Dynamic Systems , 1986 .

[15]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[16]  Patrick Rives,et al.  Classification and realization of the different vision-based tasks , 1993 .

[17]  Andrew Zisserman,et al.  Geometric invariance in computer vision , 1992 .

[18]  William L. Wilson,et al.  VISUAL SERVO CONTROL OF ROBOTS USING KALMAN FILTER ESTIMATES OF ROBOT POSE RELATIVE TO WORK-PIECES , 1993 .

[19]  Umesh A. Korde,et al.  Position Control Experiments Using Vision , 1994, Int. J. Robotics Res..

[20]  Lee E. Weiss,et al.  Dynamic sensor-based control of robots with visual feedback , 1987, IEEE Journal on Robotics and Automation.

[21]  Hidenori Kimura,et al.  LQ OPTIMAL AND NONLINEAR APPROACHES TO VISUAL SERVOING , 1993 .

[22]  Peter K. Allen,et al.  Hand-Eye Coordination for Robotic Tracking and Grasping , 1993 .

[23]  Daniel E. Koditschek,et al.  Further progress in robot juggling: the spatial two-juggle , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[24]  Seth Hutchinson,et al.  Visual compliance: task-directed visual servo control , 1994, IEEE Trans. Robotics Autom..

[25]  Gerd Hirzinger,et al.  A Sensor-based Telerobotic System for the Space Robot Experiment ROTEX , 1991, ISER.

[26]  Pradeep K. Khosla,et al.  Strategies for Increasing the Tracking Region of an Eye-in-Hand System by Singularity and Joint Limit Avoidance , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[27]  Minoru Asada,et al.  Versatile visual servoing without knowledge of true Jacobian , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[28]  Fumio Miyazaki,et al.  Manipulator control by using servoing with the stereo vision , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[29]  Steven B. Skaar,et al.  Three-Dimensional Camera Space Manipulation , 1990, Int. J. Robotics Res..

[30]  W. J. Wilson,et al.  Visual Servo Control of Robots Using Kalman Filter Estimates of Relative Pose , 1993 .

[31]  Claude Samson,et al.  Robot Control: The Task Function Approach , 1991 .

[32]  R. L. Andersson Dynamic sensing in a ping-pong playing robot , 1989, IEEE Trans. Robotics Autom..

[33]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[34]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[35]  Peter Corke,et al.  VISUAL CONTROL OF ROBOT MANIPULATORS – A REVIEW , 1993 .

[36]  Gregory D. Hager,et al.  Calibration-free visual control using projective invariance , 1995, Proceedings of IEEE International Conference on Computer Vision.

[37]  Pradeep K. Khosla,et al.  Vision and force driven sensorimotor primitives for robotic assembly skills , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[38]  Olivier Faugeras,et al.  Three-Dimensional Computer Vision , 1993 .