Energy-momentum method for co-rotational plane beams: A comparative study of shear flexible formulations

Abstract This paper presents an energy-momentum method for three dynamic co-rotational formulations of shear flexible 2D beams. The classical midpoint rule is applied for both kinematic and strain quantities. Although the idea as such was developed in previous work, its realization and testing in the context of co-rotational Timoshenko 2D beam elements is done here for the first time. The main interest of the method is that the total energy and momenta are conserved. The three proposed formulations are based on the same co-rotational framework but they differ in the assumptions done to derive the local formulations. Four numerical applications are used to assess the accuracy and efficiency of each formulation. In particularly, the conservation of energy with a very large number of steps and the possibility to simplify the tangent dynamic matrix are investigated.

[1]  M. Hjiaj,et al.  Efficient formulation for dynamics of corotational 2D beams , 2011 .

[2]  J. C. Simo,et al.  A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .

[3]  M. Crisfield,et al.  An energy conserving co-rotational procedure for non-linear dynamics with finite elements , 1996 .

[4]  M. Hjiaj,et al.  A comparative study of displacement and mixed‐based corotational finite element formulations for elasto‐plastic three‐dimensional beam analysis , 2011 .

[5]  Jean-Marc Battini,et al.  Plastic instability of beam structures using co-rotational elements , 2002 .

[6]  P. Wriggers,et al.  An energy–momentum integration scheme and enhanced strain finite elements for the non-linear dynamics of shells , 2002 .

[7]  P. Wriggers,et al.  On the design of energy–momentum integration schemes for arbitrary continuum formulations. Applications to classical and chaotic motion of shells , 2004 .

[8]  Jean-Marc Battini,et al.  Efficient local formulation for elasto-plastic corotational thin-walled beams , 2011 .

[9]  Ignacio Romero,et al.  An analysis of the stress formula for energy-momentum methods in nonlinear elastodynamics , 2012 .

[10]  Armando Miguel Awruch,et al.  Corotational nonlinear dynamic analysis of laminated composite shells , 2011 .

[11]  M. Hjiaj,et al.  Dynamics of 3D beam elements in a corotational context: A comparative study of established and new formulations , 2012 .

[12]  Jean-Marc Battini,et al.  Corotational mixed finite element formulation for thin-walled beams with generic cross-section , 2010 .

[13]  K. Hsiao,et al.  A CO-ROTATIONAL FORMULATION FOR NONLINEAR DYNAMIC ANALYSIS OF CURVED EULER BEAM , 1995 .

[14]  K. Bathe Conserving energy and momentum in nonlinear dynamics: A simple implicit time integration scheme , 2007 .

[15]  C. Pacoste,et al.  Co-rotational beam elements with warping effects in instability problems , 2002 .

[16]  Jean-Marc Battini,et al.  Local formulation for elasto-plastic corotational thin-walled beams based on higher-order curvature terms , 2011 .

[17]  J. C. Simo,et al.  On the dynamics of finite-strain rods undergoing large motions a geometrically exact approach , 1988 .

[18]  Boštjan Brank,et al.  ON NON-LINEAR DYNAMICS OF SHELLS: IMPLEMENTATION OF ENERGY-MOMENTUM CONSERVING ALGORITHM FOR A FINITE ROTATION SHELL MODEL , 1998 .

[19]  K. Hsiao,et al.  Dynamic analysis of planar flexible mechanisms by co-rotational formulation , 1991 .

[20]  Barbara I. Wohlmuth,et al.  Energy-Conserving Algorithms for a Corotational Formulation , 2008, SIAM J. Numer. Anal..

[21]  J. C. Simo,et al.  Geometrically non‐linear enhanced strain mixed methods and the method of incompatible modes , 1992 .

[22]  Oscar Gonzalez,et al.  Exact energy and momentum conserving algorithms for general models in nonlinear elasticity , 2000 .

[23]  M. Hjiaj,et al.  Three-dimensional formulation of a mixed corotational thin-walled beam element incorporating shear and warping deformation , 2011 .

[24]  Laurent Stainier,et al.  An energy–momentum conserving algorithm for non‐linear hypoelastic constitutive models , 2004 .

[25]  Peter Wriggers,et al.  On enhanced strain methods for small and finite deformations of solids , 1996 .

[26]  M. Crisfield,et al.  A co‐rotational element/time‐integration strategy for non‐linear dynamics , 1994 .

[27]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[28]  M. Saje,et al.  Energy conserving time integration scheme for geometrically exact beam , 2007 .

[29]  Robert L. Taylor,et al.  A mixed-enhanced strain method: Part II: Geometrically nonlinear problems , 2000 .

[30]  Peter Wriggers,et al.  Advection approaches for single- and multi-material arbitrary Lagrangian–Eulerian finite element procedures , 2006 .

[31]  Anders Eriksson,et al.  Beam elements in instability problems , 1997 .

[32]  J. N. Reddy,et al.  A corotational finite element formulation for the analysis of planar beams , 2005 .

[33]  H. Elkaranshawy,et al.  Corotational finite element analysis of planar flexible multibody systems , 1995 .

[34]  Peter Wriggers,et al.  Nonlinear Dynamics of Shells: Theory, Finite Element Formulation, and Integration Schemes , 1997 .

[35]  Jean-Marc Battini,et al.  Corotational formulation for nonlinear dynamics of beams with arbitrary thin-walled open cross-sections , 2014 .

[36]  M. Géradin,et al.  Flexible Multibody Dynamics: A Finite Element Approach , 2001 .

[37]  S. Atluri,et al.  Dynamic analysis of planar flexible beams with finite rotations by using inertial and rotating frames , 1995 .

[38]  J. Reddy ON LOCKING-FREE SHEAR DEFORMABLE BEAM FINITE ELEMENTS , 1997 .

[39]  Ignacio Romero,et al.  An objective finite element approximation of the kinematics of geometrically exact rods and its use in the formulation of an energy–momentum conserving scheme in dynamics , 2002 .

[40]  Ekkehard Ramm,et al.  Generalized Energy–Momentum Method for non-linear adaptive shell dynamics , 1999 .

[41]  K. Hsiao,et al.  A consistent co-rotational finite element formulation for geometrically nonlinear dynamic analysis of 3-D beams , 1999 .

[42]  Donald W. White,et al.  Displacement, Flexibility, and Mixed Beam – Column Finite Element Formulations for Distributed Plasticity Analysis , 2005 .

[43]  M. Crisfield,et al.  Energy‐conserving and decaying Algorithms in non‐linear structural dynamics , 1999 .

[44]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[45]  Gangan Prathap,et al.  Reduced integration and the shear-flexible beam element , 1982 .

[46]  J. Reddy An introduction to the finite element method , 1989 .

[47]  Jari Mäkinen,et al.  Critical study of Newmark-scheme on manifold of finite rotations , 2001 .

[48]  Robert L. Taylor,et al.  A mixed finite element method for beam and frame problems , 2003 .

[49]  M. Hjiaj,et al.  A consistent 3D corotational beam element for nonlinear dynamic analysis of flexible structures , 2014 .

[50]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .

[51]  J. C. Simo,et al.  Non-linear dynamics of three-dimensional rods: Exact energy and momentum conserving algorithms , 1995 .

[52]  Donald W. White,et al.  Variationally consistent state determination algorithms for nonlinear mixed beam finite elements , 2004 .

[53]  Thomas J. R. Hughes,et al.  Improved numerical dissipation for time integration algorithms in structural dynamics , 1977 .

[54]  M. A. Crisfield,et al.  An energy‐conserving co‐rotational procedure for the dynamics of shell structures , 1998 .

[55]  Peter Wriggers,et al.  Consistent gradient formulation for a stable enhanced strain method for large deformations , 1996 .

[56]  Peter Betsch,et al.  Conservation properties of a time FE method—part II: Time‐stepping schemes for non‐linear elastodynamics , 2001 .

[57]  M. Crisfield,et al.  Dynamics of 3-D co-rotational beams , 1997 .

[58]  A mixed variational principle for finite element analysis , 1982 .

[59]  A. Ibrahimbegovic,et al.  Finite element analysis of linear and non‐linear planar deformations of elastic initially curved beams , 1993 .

[60]  Raffaele Casciaro,et al.  The implicit corotational method and its use in the derivation of nonlinear structural models for beams and plates , 2012 .

[61]  P. Xia,et al.  Corotational Nonlinear Dynamic Analysis of Thin-Shell Structures with Finite Rotations , 2015 .

[62]  Mohammed Hjiaj,et al.  An energy‐momentum method for in‐plane geometrically exact Euler–Bernoulli beam dynamics , 2015 .

[63]  B. Tabarrok,et al.  Co-rotational dynamic analysis of flexible beams , 1998 .

[64]  U. Galvanetto,et al.  AN ENERGY‐CONSERVING CO‐ROTATIONAL PROCEDURE FOR THE DYNAMICS OF PLANAR BEAM STRUCTURES , 1996 .

[65]  Eric P. Kasper,et al.  A mixed-enhanced strain method , 2000 .