Gain Calibration Technique for Increased Resolution in FRC Data Converters

A feedforward residue compensation (FRC) data converter combines the benefits of a Nyquist rate analog-to-digital converter (ADC) with an oversampled converter. In this brief, the authors introduce a digital calibration technique that allows the FRC architecture to provide high resolution at high input signal frequencies. A high-performance pipeline ADC is used as an auxiliary converter to measure the quantization effects of an oversampled primary converter in the FRC architecture. A practical ADC architecture using a digital gain error calibration technique produces a 15-bit 70-Msample/s converter with greater than 100-dB spurious-free dynamic range. Simulation results are used to validate the architecture and gain calibration technique

[1]  T. Kuyel,et al.  A 14 b 40 MSample/s pipelined ADC with DFCA , 2001, 2001 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. ISSCC (Cat. No.01CH37177).

[2]  Govert Geelen,et al.  Converter Using an Amplifier Preset Technique , 2004 .

[3]  Paul R. Gray,et al.  A pipelined 13-bit 250-ks/s 5-V analog-to-digital converter , 1988 .

[4]  A. Abidi,et al.  A 3 . 3V 12b 50-MS / s A / D Converter in 0 . 6-m CMOS with over 80-dB SFDR , 2000 .

[5]  Ian Galton,et al.  Gain error correction technique for pipelined analogue-to-digital converters , 2000 .

[6]  Todd L. Brooks,et al.  A cascaded sigma-delta pipeline A/D converter with 1.25 MHz signal bandwidth and 89 dB SNR , 1997 .

[7]  O. Moldsvor,et al.  A 1.2V 220MS/s 10b pipeline ADC implemented in 0.13/spl mu/m digital CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[8]  Masahiro Segami,et al.  CMOS with over 80dB SFDR , 2000 .

[9]  Preetam Tadeparthy,et al.  A 115mW 12-bit 50 MSPS pipelined ADC , 2002, 2002 IEEE International Symposium on Circuits and Systems. Proceedings (Cat. No.02CH37353).

[10]  O. Hidri,et al.  A 1.8V 1.6GS/s 8b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[11]  B.A. Wooley,et al.  A 150MS/s 8b 71mW time-interleaved ADC in 0.18/spl mu/m CMOS , 2004, 2004 IEEE International Solid-State Circuits Conference (IEEE Cat. No.04CH37519).

[12]  V. Savengsveksa,et al.  An 8-b 20-Msample/s pipelined A/D converter in 0.5-/spl mu/m CMOS with 7.8 ENOB , 2005, 48th Midwest Symposium on Circuits and Systems, 2005..

[13]  F. Murden,et al.  A new paradigm for base station receivers: high IF sampling + digital filtering , 1997, 1997 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium. Digest of Technical Papers.

[14]  Hae-Moon Seo,et al.  Relationship between ADC performance and requirements of digital-IF receiver for WCDMA base-station , 2003, IEEE Trans. Veh. Technol..

[15]  A.A. Abidi,et al.  A 3.3-V 12-b 50-MS/s A/D converter in 0.6-/spl mu/m CMOS with over 80-dB SFDR , 2000, IEEE Journal of Solid-State Circuits.

[16]  David B. Chester,et al.  Digital IF filter technology for 3G systems: an introduction , 1999, IEEE Commun. Mag..

[17]  Ramesh Harjani,et al.  FRC: a method for extending the resolution of Nyquist rate converters using oversampling , 1998 .

[18]  N. Chandran,et al.  Three generations of cellular wireless systems , 2001 .

[19]  Un-Ku Moon,et al.  A 2.5 V 10 b 120 MSample/s CMOS pipelined ADC with high SFDR , 2002, Proceedings of the IEEE 2002 Custom Integrated Circuits Conference (Cat. No.02CH37285).

[20]  V. Savengsveksa,et al.  An 8b 20-Msample / s Pipelined A / D Converter in 0 . 5-μ m CMOS with 7 . 8 ENOB , 2005 .

[21]  R.C. Taft,et al.  A 1.8-V 1.6-GSample/s 8-b self-calibrating folding ADC with 7.26 ENOB at Nyquist frequency , 2004, IEEE Journal of Solid-State Circuits.