Anomaly detection for visual analytics of power consumption data

Commercial buildings are significant consumers of electrical power. Also, energy expenses are an increasing cost factor. Many companies therefore want to save money and reduce their power usage. Building administrators have to first understand the power consumption behavior, before they can devise strategies to save energy. Second, sudden unexpected changes in power consumption may hint at device failures of critical technical infrastructure. The goal of our research is to enable the analyst to understand the power consumption behavior and to be aware of unexpected power consumption values. In this paper, we introduce a novel unsupervised anomaly detection algorithm and visualize the resulting anomaly scores to guide the analyst to important time points. Different possibilities for visualizing the power usage time series are presented, combined with a discussion of the design choices to encode the anomaly values. Our methods are applied to real-world time series of power consumption, logged in a hierarchical sensor network.

[1]  Jessica Granderson Building Energy Information Systems: State of the Technology and User Case Studies , 2010 .

[2]  Daniel A. Keim,et al.  Importance-driven visualization layouts for large time series data , 2005, IEEE Symposium on Information Visualization, 2005. INFOVIS 2005..

[3]  Jarke J. van Wijk,et al.  Squarified Treemaps , 2000, VisSym.

[4]  Luca Maria Gambardella,et al.  Artificial Defocus for Displaying Markers in Microscopy Z-Stacks , 2011, IEEE Transactions on Visualization and Computer Graphics.

[5]  Ben Shneiderman,et al.  Tree visualization with tree-maps: 2-d space-filling approach , 1992, TOGS.

[6]  Heidrun Schumann,et al.  Visualization of Time-Oriented Data , 2011, Human-Computer Interaction Series.

[7]  Manish Marwah,et al.  A Visual Analytics Approach for Peak‐Preserving Prediction of Large Seasonal Time Series , 2011, Comput. Graph. Forum.

[8]  Johanna L. Mathieu,et al.  Quantifying Changes in Building Electricity Use, With Application to Demand Response , 2011, IEEE Transactions on Smart Grid.

[9]  Silvia Miksch,et al.  Semantic depth of field , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[10]  Heidrun Schumann,et al.  Time & Time-Oriented Data , 2011 .

[11]  John E. Seem,et al.  Using intelligent data analysis to detect abnormal energy consumption in buildings , 2007 .

[12]  A KeimDaniel Designing Pixel-Oriented Visualization Techniques , 2000 .

[13]  Manish Marwah,et al.  Towards an understanding of campus-scale power consumption , 2011, BuildSys '11.

[14]  Stephen McArthur,et al.  Online conditional anomaly detection in multivariate data for transformer monitoring , 2011 .

[15]  Anthony Rowe,et al.  SAGA: Tracking and Visualization of Building Energy , 2011, 2011 IEEE 17th International Conference on Embedded and Real-Time Computing Systems and Applications.

[16]  Barbara T. Fichman Annual Energy Review 2011 , 2012 .

[17]  Christopher G. Healey,et al.  Choosing effective colours for data visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[18]  Daniel A. Keim,et al.  Regular TreeMap layouts for visual analysis of hierarchical data , 2006, SCCG.

[19]  Frédéric Magoulès,et al.  A review on the prediction of building energy consumption , 2012 .

[20]  Vikramaditya Jakkula,et al.  Outlier Detection in Smart Environment Structured Power Datasets , 2010, 2010 Sixth International Conference on Intelligent Environments.

[21]  Manish Marwah,et al.  Following the electrons: methods for power management in commercial buildings , 2012, KDD.

[22]  Silvia Miksch,et al.  Hierarchical Temporal Patterns and Interactive Aggregated Views for Pixel-Based Visualizations , 2009, 2009 13th International Conference Information Visualisation.

[23]  Arie E. Kaufman,et al.  Importance Driven Automatic Color Design for Direct Volume Rendering , 2012, Comput. Graph. Forum.

[24]  Hans-Peter Kriegel,et al.  Recursive pattern: a technique for visualizing very large amounts of data , 1995, Proceedings Visualization '95.

[25]  Hans-Peter Kriegel,et al.  Issues in visualizing large databases , 1997 .

[26]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[27]  Yuan He,et al.  SAVE: Sensor anomaly visualization engine , 2011, 2011 IEEE Conference on Visual Analytics Science and Technology (VAST).

[28]  Marc Alexa,et al.  Visualizing time-series on spirals , 2001, IEEE Symposium on Information Visualization, 2001. INFOVIS 2001..

[29]  Stephen G. Eick,et al.  Space-filling Software Visualization , 1995, J. Vis. Lang. Comput..

[30]  Daniel A. Keim,et al.  Visual Boosting in Pixel‐based Visualizations , 2011, Comput. Graph. Forum.

[31]  Thomas Weng,et al.  The energy dashboard: improving the visibility of energy consumption at a campus-wide scale , 2009, BuildSys '09.

[32]  J.R. McDonald,et al.  An agent-based anomaly detection architecture for condition monitoring , 2005, IEEE Transactions on Power Systems.

[33]  Michael Burch,et al.  Visualizing Dynamic Quantitative Data in Hierarchies - TimeEdgeTrees: Attaching Dynamic Weights to Tree Edges , 2017, IMAGAPP/IVAPP.

[34]  ShneidermanBen Tree visualization with tree-maps , 1992 .

[35]  Ben Shneiderman,et al.  Tree-maps: a space-filling approach to the visualization of hierarchical information structures , 1991, Proceeding Visualization '91.