Origin and evolution of spliceosomal introns

Evolution of exon-intron structure of eukaryotic genes has been a matter of long-standing, intensive debate. The introns-early concept, later rebranded ‘introns first’ held that protein-coding genes were interrupted by numerous introns even at the earliest stages of life's evolution and that introns played a major role in the origin of proteins by facilitating recombination of sequences coding for small protein/peptide modules. The introns-late concept held that introns emerged only in eukaryotes and new introns have been accumulating continuously throughout eukaryotic evolution. Analysis of orthologous genes from completely sequenced eukaryotic genomes revealed numerous shared intron positions in orthologous genes from animals and plants and even between animals, plants and protists, suggesting that many ancestral introns have persisted since the last eukaryotic common ancestor (LECA). Reconstructions of intron gain and loss using the growing collection of genomes of diverse eukaryotes and increasingly advanced probabilistic models convincingly show that the LECA and the ancestors of each eukaryotic supergroup had intron-rich genes, with intron densities comparable to those in the most intron-rich modern genomes such as those of vertebrates. The subsequent evolution in most lineages of eukaryotes involved primarily loss of introns, with only a few episodes of substantial intron gain that might have accompanied major evolutionary innovations such as the origin of metazoa. The original invasion of self-splicing Group II introns, presumably originating from the mitochondrial endosymbiont, into the genome of the emerging eukaryote might have been a key factor of eukaryogenesis that in particular triggered the origin of endomembranes and the nucleus. Conversely, splicing errors gave rise to alternative splicing, a major contribution to the biological complexity of multicellular eukaryotes. There is no indication that any prokaryote has ever possessed a spliceosome or introns in protein-coding genes, other than relatively rare mobile self-splicing introns. Thus, the introns-first scenario is not supported by any evidence but exon-intron structure of protein-coding genes appears to have evolved concomitantly with the eukaryotic cell, and introns were a major factor of evolution throughout the history of eukaryotes. This article was reviewed by I. King Jordan, Manuel Irimia (nominated by Anthony Poole), Tobias Mourier (nominated by Anthony Poole), and Fyodor Kondrashov. For the complete reports, see the Reviewers’ Reports section.

[1]  D. Penny,et al.  Smoke without fire: most reported cases of intron gain in nematodes instead reflect intron losses. , 2006, Molecular biology and evolution.

[2]  E. Koonin,et al.  Accumulation of GC donor splice signals in mammals , 2008, Biology Direct.

[3]  Junhyong Kim,et al.  Cytoplasmic Intron Sequence-Retaining Transcripts Can Be Dendritically Targeted via ID Element Retrotransposons , 2011, Neuron.

[4]  J. M. Comeron,et al.  Selective and Mutational Patterns Associated With Gene Expression in Humans , 2004, Genetics.

[5]  T. Nilsen Evolutionary origin of SL-addition trans-splicing: still an enigma. , 2001, Trends in genetics : TIG.

[6]  M. Kreitman,et al.  Analysis of conserved noncoding DNA in Drosophila reveals similar constraints in intergenic and intronic sequences. , 2001, Genome research.

[7]  F. Dietrich,et al.  Evidence of mRNA-Mediated Intron Loss in the Human-Pathogenic Fungus Cryptococcus neoformans , 2006, Eukaryotic Cell.

[8]  D. Carlini,et al.  Synonymous SNPs Provide Evidence for Selective Constraint on Human Exonic Splicing Enhancers , 2005, Journal of Molecular Evolution.

[9]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[10]  L. Patthy,et al.  Intron‐dependent evolution: Preferred types of exons and introns , 1987, FEBS letters.

[11]  D. Penny,et al.  Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of O. sativa and A. thaliana. , 2006, Molecular biology and evolution.

[12]  M. Lynch,et al.  Ubiquitous internal gene duplication and intron creation in eukaryotes , 2009, Proceedings of the National Academy of Sciences.

[13]  V. Babenko,et al.  Does Drive Toward Canonic Exonic Splicing Sites Exist in Mammals? , 2010, Journal of Molecular Evolution.

[14]  Scott W Roy,et al.  Intron-rich ancestors. , 2006, Trends in genetics : TIG.

[15]  T. Köcher,et al.  The DExH/D box protein HEL/UAP56 is essential for mRNA nuclear export in Drosophila , 2001, Current Biology.

[16]  C Joel McManus,et al.  Global analysis of trans-splicing in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[17]  Igor B. Rogozin,et al.  Reconstruction of Ancestral Protosplice Sites , 2004, Current Biology.

[18]  J. Finnerty,et al.  A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis. , 2006, Genome informatics. International Conference on Genome Informatics.

[19]  A. Grigoriev,et al.  Significant expansion of exon-bordering protein domains during animal proteome evolution , 2005, Nucleic acids research.

[20]  Miklós Csürös Malin: maximum likelihood analysis of intron evolution in eukaryotes , 2008, Bioinform..

[21]  Marcela Dávila López,et al.  Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components , 2008, Nucleic acids research.

[22]  K. Howe,et al.  Genomic regulatory blocks encompass multiple neighboring genes and maintain conserved synteny in vertebrates. , 2007, Genome research.

[23]  E. Koonin,et al.  Intron sliding in conserved gene families. , 2000, Trends in genetics : TIG.

[24]  L. Carmel,et al.  The role of reverse transcriptase in intron gain and loss mechanisms. , 2012, Molecular biology and evolution.

[25]  Arlin Stoltzfus,et al.  Molecular evolution: Recent cases of spliceosomal intron gain? , 1998, Current Biology.

[26]  T. Blumenthal,et al.  Trans‐splicing , 2011, Wiley interdisciplinary reviews. RNA.

[27]  Tyler S. Alioto,et al.  U12DB: a database of orthologous U12-type spliceosomal introns , 2006, Nucleic Acids Res..

[28]  Stephen M. Mount,et al.  Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis , 2006, BMC Genomics.

[29]  Gil Ast,et al.  Comparative analysis detects dependencies among the 5' splice-site positions. , 2004, RNA.

[30]  Colin N. Dewey,et al.  Compensatory relationship between splice sites and exonic splicing signals depending on the length of vertebrate introns , 2006, BMC Genomics.

[31]  W. Martin,et al.  Evolution of spliceosomal introns following endosymbiotic gene transfer , 2010, BMC Evolutionary Biology.

[32]  Eric C Lai,et al.  Mirtrons: microRNA biogenesis via splicing. , 2011, Biochimie.

[33]  Eugene Berezikov,et al.  Mammalian mirtron genes. , 2007, Molecular cell.

[34]  Luciano Milanesi,et al.  Analysis of donor splice sites in different eukaryotic organisms , 1997, Journal of Molecular Evolution.

[35]  C. Schlötterer,et al.  Nonsense-Mediated Decay Enables Intron Gain in Drosophila , 2010, PLoS genetics.

[36]  Hung D. Nguyen,et al.  Intron Dynamics in Ribosomal Protein Genes , 2007, PloS one.

[37]  Christopher J. Lee,et al.  Genome-wide detection of alternative splicing in expressed sequences of human genes , 2001, Nucleic Acids Res..

[38]  S. Kelchner,et al.  A broadscale phylogenetic analysis of group II intron RNAs and intron-encoded reverse transcriptases. , 2009, Molecular biology and evolution.

[39]  T. Maniatis,et al.  An extensive network of coupling among gene expression machines , 2002, Nature.

[40]  M. Long,et al.  Intron presence–absence polymorphism in Drosophila driven by positive Darwinian selection , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Xuehui Huang,et al.  Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. , 2010, Genome research.

[42]  D. Halligan,et al.  Ubiquitous selective constraints in the Drosophila genome revealed by a genome-wide interspecies comparison. , 2006, Genome research.

[43]  E. Stukenbrock,et al.  Evidence for Extensive Recent Intron Transposition in Closely Related Fungi , 2011, Current Biology.

[44]  E. Koonin,et al.  Evolutionarily conserved genes preferentially accumulate introns. , 2007, Genome research.

[45]  K. Klinger,et al.  Alternative splicing of exon 3 of the human growth hormone receptor is the result of an unusual genetic polymorphism. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Pál,et al.  Highly expressed genes in yeast evolve slowly. , 2001, Genetics.

[47]  E. Koonin,et al.  The Impact of Comparative Genomics on Our Understanding of Evolution , 2000, Cell.

[48]  L. Hurst,et al.  Evidence for purifying selection against synonymous mutations in mammalian exonic splicing enhancers. , 2006, Molecular biology and evolution.

[49]  Andrew G McArthur,et al.  A spliceosomal intron in Giardia lamblia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[50]  Malay Kumar Basu,et al.  Domain mobility in proteins: functional and evolutionary implications , 2008, Briefings Bioinform..

[51]  Russell F. Doolittle,et al.  Intron Distribution in Ancient Paralogs Supports Random Insertion and Not Random Loss , 1997, Journal of Molecular Evolution.

[52]  Anuj Kumar,et al.  An Overview of Nested Genes in Eukaryotic Genomes , 2009, Eukaryotic Cell.

[53]  J. Parsch Selective constraints on intron evolution in Drosophila. , 2003, Genetics.

[54]  Hung D. Nguyen,et al.  Phase distribution of spliceosomal introns: implications for intron origin , 2006, BMC Evolutionary Biology.

[55]  T. Blumenthal,et al.  trans Splicing of PolycistronicCaenorhabditis elegans Pre-mRNAs: Analysis of the SL2 RNA , 2000, Molecular and Cellular Biology.

[56]  E. Koonin,et al.  The ancient Virus World and evolution of cells , 2006, Biology Direct.

[57]  Kevin Burrage,et al.  ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome , 2000, Nature Genetics.

[58]  E. Hurt,et al.  The protein Aly links pre-messenger-RNA splicing to nuclear export in metazoans , 2000, Nature.

[59]  Frédéric Delsuc,et al.  Plasticity of Animal Genome Architecture Unmasked by Rapid Evolution of a Pelagic Tunicate , 2010, Science.

[60]  I. Ebersberger,et al.  A variable intron distribution in globin genes of Chironomus: evidence for recent intron gain. , 1997, Gene.

[61]  D. M. Krylov,et al.  Gene loss, protein sequence divergence, gene dispensability, expression level, and interactivity are correlated in eukaryotic evolution. , 2003, Genome research.

[62]  Lesley Collins,et al.  Complex spliceosomal organization ancestral to extant eukaryotes. , 2005, Molecular biology and evolution.

[63]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[64]  A. Lambowitz,et al.  Group II introns: mobile ribozymes that invade DNA. , 2011, Cold Spring Harbor perspectives in biology.

[65]  D. Niu,et al.  Selection for the miniaturization of highly expressed genes. , 2007, Biochemical and biophysical research communications.

[66]  S. Brenner,et al.  Investigation of loss and gain of introns in the compact genomes of pufferfishes (Fugu and Tetraodon). , 2008, Molecular biology and evolution.

[67]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[68]  C. Guthrie,et al.  Transcript Specificity in Yeast Pre-mRNA Splicing Revealed by Mutations in Core Spliceosomal Components , 2007, PLoS biology.

[69]  A. Russell,et al.  An early evolutionary origin for the minor spliceosome , 2006, Nature.

[70]  Eugene V Koonin,et al.  A glimpse of a putative pre-intron phase of eukaryotic evolution. , 2007, Trends in genetics : TIG.

[71]  C. Wilke,et al.  The evolutionary consequences of erroneous protein synthesis , 2009, Nature Reviews Genetics.

[72]  L. Patthy Genome evolution and the evolution of exon-shuffling--a review. , 1999, Gene.

[73]  Eugene V Koonin,et al.  Evolution of alternative and constitutive regions of mammalian 5'UTRs , 2009, BMC Genomics.

[74]  Klaudia Walter,et al.  Open access, freely available online PLoS BIOLOGY Highly Conserved Non-Coding Sequences Are Associated with Vertebrate Development , 2022 .

[75]  P. Perlman,et al.  A structural analysis of the group II intron active site and implications for the spliceosome. , 2010, RNA.

[76]  Jean Thierry-Mieg,et al.  A global analysis of Caenorhabditis elegans operons , 2002, Nature.

[77]  B. Birren,et al.  Patterns of Intron Gain and Loss in Fungi , 2004, PLoS biology.

[78]  Eugene V Koonin,et al.  Prevalence of intron gain over intron loss in the evolution of paralogous gene families. , 2004, Nucleic acids research.

[79]  G. M. Suboch,et al.  Analysis of nonuniformity in intron phase distribution. , 1992, Nucleic acids research.

[80]  H. Le Hir,et al.  The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon–exon junctions , 2000, The EMBO journal.

[81]  Henry D. Priest,et al.  Genome-wide mapping of alternative splicing in Arabidopsis thaliana. , 2010, Genome research.

[82]  H. Ragg,et al.  Ancestry and evolution of a secretory pathway serpin , 2008, BMC Evolutionary Biology.

[83]  L. Hurst,et al.  Gametophytic Selection in Arabidopsis thaliana Supports the Selective Model of Intron Length Reduction , 2005, PLoS genetics.

[84]  Sherif Abou Elela,et al.  Modern origin of numerous alternatively spliced human introns from tandem arrays , 2007, Proceedings of the National Academy of Sciences.

[85]  E. Koonin The Logic of Chance: The Nature and Origin of Biological Evolution , 2011 .

[86]  H. Lehrach,et al.  Hypervariable and Highly Divergent Intron–Exon Organizations in the Chordate Oikopleura dioica , 2004, Journal of Molecular Evolution.

[87]  Liran Carmel,et al.  An Expectation-Maximization Algorithm for Analysis of Evolution of Exon-Intron Structure of Eukaryotic Genes , 2005, Comparative Genomics.

[88]  M. Long,et al.  Testing the "proto-splice sites" model of intron origin: evidence from analysis of intron phase correlations. , 2000, Molecular biology and evolution.

[89]  Boris Lenhard,et al.  Arrays of ultraconserved non-coding regions span the loci of key developmental genes in vertebrate genomes , 2004, BMC Genomics.

[90]  S. J. Souza The Emergence of a Synthetic Theory of Intron Evolution , 2003, Genetica.

[91]  M. Averof,et al.  Evidence for multiple independent origins of trans-splicing in Metazoa. , 2010, Molecular biology and evolution.

[92]  G. Ast,et al.  Alternative splicing and evolution: diversification, exon definition and function , 2010, Nature Reviews Genetics.

[93]  R. Reed,et al.  Initial splice-site recognition and pairing during pre-mRNA splicing. , 1996, Current opinion in genetics & development.

[94]  D. Penny,et al.  The Path from the RNA World , 1998, Journal of Molecular Evolution.

[95]  L. Chasin,et al.  Positive selection acting on splicing motifs reflects compensatory evolution. , 2008, Genome research.

[96]  Ed Hurt,et al.  Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p , 2001, Nature.

[97]  Ewan Birney,et al.  Estimating the neutral rate of nucleotide substitution using introns. , 2006, Molecular biology and evolution.

[98]  E. Koonin,et al.  Origins and evolution of eukaryotic RNA interference. , 2008, Trends in ecology & evolution.

[99]  Martin Vingron,et al.  Increase of functional diversity by alternative splicing. , 2003, Trends in genetics : TIG.

[100]  Igor B. Rogozin,et al.  In search of lost introns , 2007, ISMB/ECCB.

[101]  Gautam Chaudhuri,et al.  Alternative initiation and splicing in dicer gene expression in human breast cells , 2005, Breast Cancer Research.

[102]  L. Patthy,et al.  Modules, multidomain proteins and organismic complexity , 2005, The FEBS journal.

[103]  D. Tautz,et al.  Of statistics and genomes. , 2004, Trends in genetics : TIG.

[104]  P Bork,et al.  EST comparison indicates 38% of human mRNAs contain possible alternative splice forms , 2000, FEBS letters.

[105]  I. Bolívar,et al.  Tempo and Mode of Spliceosomal Intron Evolution in Actin of Foraminifera , 2006, Journal of Molecular Evolution.

[106]  W. Gilbert Why genes in pieces? , 1978, Nature.

[107]  R. Padgett,et al.  Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. , 1997, Molecular cell.

[108]  Stephen M. Mount,et al.  Splicing signals in Drosophila: intron size, information content, and consensus sequences. , 1992, Nucleic acids research.

[109]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[110]  F. Ayala,et al.  Origins and evolution of spliceosomal introns. , 2006, Annual review of genetics.

[111]  A. Newman,et al.  Exon Junction Sequences as Cryptic Splice Sites Implications for Intron Origin , 2004, Current Biology.

[112]  J. Coulombe-Huntington,et al.  Intron loss and gain in Drosophila. , 2007, Molecular biology and evolution.

[113]  F. Ayala,et al.  A new Drosophila spliceosomal intron position is common in plants , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[114]  M. Mann,et al.  Pre-mRNA splicing and mRNA export linked by direct interactions between UAP56 and Aly , 2001, Nature.

[115]  C. Guthrie,et al.  A novel role for a U5 snRNP protein in 3' splice site selection. , 1995, Genes & development.

[116]  K. Grzeschik,et al.  Human GLI3 Intragenic Conserved Non-Coding Sequences Are Tissue-Specific Enhancers , 2007, PloS one.

[117]  J. Nap,et al.  In plants, highly expressed genes are the least compact. , 2006, Trends in genetics : TIG.

[118]  M. Lynch The origins of eukaryotic gene structure. , 2006, Molecular biology and evolution.

[119]  E. Koonin,et al.  Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. , 2007, Molecular biology and evolution.

[120]  David Penny,et al.  Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing , 2007, BMC Evolutionary Biology.

[121]  M. Irimia,et al.  Evolution of Alternative Splicing Regulation: Changes in Predicted Exonic Splicing Regulators Are Not Associated with Changes in Alternative Splicing Levels in Primates , 2009, PloS one.

[122]  J. Steitz,et al.  SR splicing factors serve as adapter proteins for TAP-dependent mRNA export. , 2003, Molecular cell.

[123]  D. Penny,et al.  A very high fraction of unique intron positions in the intron-rich diatom Thalassiosira pseudonana indicates widespread intron gain. , 2007, Molecular biology and evolution.

[124]  Douglas G. Scofield,et al.  Intron presence-absence polymorphisms in Daphnia. , 2008, Molecular biology and evolution.

[125]  Cristian I. Castillo-Davis,et al.  Selection for short introns in highly expressed genes , 2002, Nature Genetics.

[126]  A. Russell,et al.  An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia , 2005, BMC Evolutionary Biology.

[127]  E. Koonin,et al.  Nested genes and increasing organizational complexity of metazoan genomes. , 2008, Trends in genetics : TIG.

[128]  R. Reed,et al.  Splicing is required for rapid and efficient mRNA export in metazoans. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Eugene V Koonin,et al.  Preferential loss and gain of introns in 3' portions of genes suggests a reverse-transcription mechanism of intron insertion. , 2004, Gene.

[130]  Tanya Vavouri,et al.  Ancient duplicated conserved noncoding elements in vertebrates: a genomic and functional analysis. , 2006, Genome research.

[131]  S. Bowman,et al.  Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function , 2007, Proceedings of the National Academy of Sciences.

[132]  Eugene V Koonin,et al.  Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. , 2008, Molecular biology and evolution.

[133]  Igor B. Rogozin,et al.  Evidence of Splice Signal Migration from Exon to Intron during Intron Evolution , 2003, Current Biology.

[134]  N. Dibb,et al.  Proto-splice site model of intron origin. , 1991, Journal of theoretical biology.

[135]  N. Brockdorff,et al.  A Dual Origin of the Xist Gene from a Protein-Coding Gene and a Set of Transposable Elements , 2008, PloS one.

[136]  G. Fink,et al.  Pseudogenes in yeast? , 1987, Cell.

[137]  P. Stadler,et al.  Some novel intron positions in conserved Drosophila genes are caused by intron sliding or tandem duplication , 2010, BMC Evolutionary Biology.

[138]  P. Sharp,et al.  Evolutionary fates and origins of U12-type introns. , 1998, Molecular cell.

[139]  B. Frey,et al.  Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing , 2008, Nature Genetics.

[140]  Jackson Ij,et al.  A reappraisal of non-consensus mRNA splice sites. , 1991 .

[141]  H. Le Hir,et al.  Pre-mRNA splicing alters mRNP composition: evidence for stable association of proteins at exon-exon junctions. , 2000, Genes & development.

[142]  F. Müller,et al.  Intronic enhancers control expression of zebrafish sonic hedgehog in floor plate and notochord. , 1999, Development.

[143]  Cristian I. Castillo-Davis,et al.  Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. , 2004, Molecular biology and evolution.

[144]  J. Vaughn,et al.  The Evolution of Single-Copy Drosophila Nuclear 4f-rnp Genes: Spliceosomal Intron Losses Create Polymorphic Alleles , 2002, Journal of Molecular Evolution.

[145]  I. Jackson,et al.  A reappraisal of non-consensus mRNA splice sites. , 1991, Nucleic acids research.

[146]  E. Koonin,et al.  Conservation versus parallel gains in intron evolution , 2005, Nucleic acids research.

[147]  M. Rosbash,et al.  The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing , 2002, Nature.

[148]  J. Coulombe-Huntington,et al.  Characterization of intron loss events in mammals. , 2006, Genome research.

[149]  E. Koonin,et al.  Remarkable Interkingdom Conservation of Intron Positions and Massive, Lineage-Specific Intron Loss and Gain in Eukaryotic Evolution , 2003, Current Biology.

[150]  Tracy Farrer,et al.  Analysis of the role of Caenorhabditis elegans GC-AG introns in regulated splicing. , 2002, Nucleic acids research.

[151]  M. Lynch The frailty of adaptive hypotheses for the origins of organismal complexity , 2007, Proceedings of the National Academy of Sciences.

[152]  Wei Zheng,et al.  Translational Regulation of Angiotensin Type 1a Receptor Expression and Signaling by Upstream AUGs in the 5′ Leader Sequence* , 2004, Journal of Biological Chemistry.

[153]  A. Salamov,et al.  Green Evolution and Dynamic Adaptations Revealed by Genomes of the Marine Picoeukaryotes Micromonas , 2009, Science.

[154]  Erin E. Gill,et al.  Constrained intron structures in a microsporidian. , 2010, Molecular biology and evolution.

[155]  Alexei Fedorov,et al.  Large-scale comparison of intron positions among animal, plant, and fungal genes , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[156]  Michel Eduardo Beleza Yamagishi,et al.  Detection of human interchromosomal trans-splicing in sequence databanks , 2010, Briefings Bioinform..

[157]  Qiang Wu,et al.  Multiple variable first exons: a mechanism for cell- and tissue-specific gene regulation. , 2003, Genome research.

[158]  R. Padgett,et al.  Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. , 1994, Journal of molecular biology.

[159]  T. Tatusova,et al.  Cryptic splice sites and split genes , 2011, Nucleic acids research.

[160]  Eugene V Koonin,et al.  Complex selection on 5' splice sites in intron-rich organisms. , 2009, Genome research.

[161]  Noam Shomron,et al.  Biased hosting of intronic microRNA genes , 2010, Bioinform..

[162]  I. Rogozin,et al.  Primate and Rodent Specific Intron Gains and the Origin of Retrogenes with Splice Variants , 2010, Molecular biology and evolution.

[163]  Jacek Majewski,et al.  Fine-Scale Variation and Genetic Determinants of Alternative Splicing across Individuals , 2009, PLoS genetics.

[164]  Yoshiharu Sato,et al.  Low conservation and species-specific evolution of alternative splicing in humans and mice: comparative genomics analysis using well-annotated full-length cDNAs , 2008, Nucleic acids research.

[165]  H. Lehrach,et al.  Miniature genome in the marine chordate Oikopleura dioica. , 2001, Science.

[166]  D. Niu Exon definition as a potential negative force against intron losses in evolution , 2008, Biology Direct.

[167]  B. Charlesworth,et al.  Intron Size and Exon Evolution in Drosophila , 2005, Genetics.

[168]  S J de Souza,et al.  Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[169]  L. Patthy Modular Assembly of Genes and the Evolution of New Functions , 2003, Genetica.

[170]  David Penny,et al.  Coevolution of genomic intron number and splice sites. , 2007, Trends in genetics : TIG.

[171]  D. Hartl,et al.  Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number. , 2006, Genome research.

[172]  M. Zuker,et al.  Testing the exon theory of genes: the evidence from protein structure. , 1994, Science.

[173]  M. Batzer,et al.  Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[174]  M. Cariou,et al.  Phylogenetic Distribution of Intron Positions in Alpha-Amylase Genes of Bilateria Suggests Numerous Gains and Losses , 2011, PloS one.

[175]  Jurg Ott,et al.  Distribution and characterization of regulatory elements in the human genome. , 2002, Genome research.

[176]  Hung D. Nguyen,et al.  The evolution of spliceosomal introns in alveolates. , 2007, Molecular biology and evolution.

[177]  Desmond G. Higgins,et al.  Gene Expression, Intron Density, and Splice Site Strength in Drosophila and Caenorhabditis , 2007, Journal of Molecular Evolution.

[178]  Miklós Csürös,et al.  Likely Scenarios of Intron Evolution , 2005, Comparative Genomics.

[179]  Francisco J. Ayala,et al.  Alternative splicing: A missing piece in the puzzle of intron gain , 2008, Proceedings of the National Academy of Sciences.

[180]  Eugene V Koonin,et al.  A significant fraction of conserved noncoding DNA in human and mouse consists of predicted matrix attachment regions. , 2003, Trends in genetics : TIG.

[181]  Liran Carmel,et al.  Widespread positive selection in synonymous sites of mammalian genes. , 2007, Molecular biology and evolution.

[182]  D. Penny,et al.  Very little intron gain in Entamoeba histolytica genes laterally transferred from prokaryotes. , 2006, Molecular biology and evolution.

[183]  J. Parsch,et al.  On the utility of short intron sequences as a reference for the detection of positive and negative selection in Drosophila. , 2010, Molecular biology and evolution.

[184]  Abraham E. Tucker,et al.  Extensive, Recent Intron Gains in Daphnia Populations , 2009, Science.

[185]  R. Doolittle The multiplicity of domains in proteins. , 1995, Annual review of biochemistry.

[186]  W. Gilbert,et al.  Large-scale comparison of intron positions in mammalian genes shows intron loss but no gain , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[187]  Alexei Fedorov,et al.  Introns in Gene Evolution , 2004, Genetica.

[188]  L. D. Hurst,et al.  Can Codon Usage Bias Explain Intron Phase Distributions and Exon Symmetry? , 2004, Journal of Molecular Evolution.

[189]  Shi Lei,et al.  Genomic Survey of the Non-Cultivatable Opportunistic Human Pathogen, Enterocytozoon bieneusi , 2009, PLoS pathogens.

[190]  M. Lynch,et al.  Where Do Introns Come From? , 2008, PLoS biology.

[191]  T. Nilsen The spliceosome: the most complex macromolecular machine in the cell? , 2003, BioEssays : news and reviews in molecular, cellular and developmental biology.

[192]  N. Yuldasheva,et al.  A high-frequency polymorphism in exon 6 of the CD45 tyrosine phosphatase gene (PTPRC) resulting in altered isoform expression , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[193]  Eugene V. Koonin,et al.  Introns and the origin of nucleus–cytosol compartmentalization , 2006, Nature.

[194]  Douglas G Scofield,et al.  Intron size, abundance, and distribution within untranslated regions of genes. , 2006, Molecular biology and evolution.

[195]  Aalt DJ van Dijk,et al.  Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data , 2011, BMC Plant Biology.

[196]  B. Charlesworth Effective population size and patterns of molecular evolution and variation , 2009, Nature Reviews Genetics.

[197]  A. Simpson,et al.  Eukaryotic evolution: Early origin of canonical introns , 2002, Nature.

[198]  R. DeSalle,et al.  Intron Evolution: Testing Hypotheses of Intron Evolution Using the Phylogenomics of Tetraspanins , 2009, PloS one.

[199]  Lei-Ying Zhang,et al.  Evaluation of Models of the Mechanisms Underlying Intron Loss and Gain in Aspergillus Fungi , 2010, Journal of Molecular Evolution.

[200]  Walter Gilbert,et al.  Complex early genes. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Brian Charlesworth,et al.  Patterns of intron sequence evolution in Drosophila are dependent upon length and GC content , 2005, Genome Biology.

[202]  Dirk Holste,et al.  Single Nucleotide Polymorphism–Based Validation of Exonic Splicing Enhancers , 2004, PLoS biology.

[203]  K. H. Wolfe,et al.  Origins of recently gained introns in Caenorhabditis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[204]  Tobias Mourier,et al.  Eukaryotic Intron Loss , 2003, Science.

[205]  L. Hillier,et al.  A global analysis of C. elegans trans-splicing. , 2011, Genome research.

[206]  W. Gilbert,et al.  The exon theory of genes. , 1987, Cold Spring Harbor symposia on quantitative biology.

[207]  M. Tomita,et al.  On biased distribution of introns in various eukaryotes. , 2002, Gene.

[208]  E. Koonin,et al.  Three distinct modes of intron dynamics in the evolution of eukaryotes. , 2007, Genome research.

[209]  L. Hurst,et al.  Human antisense genes have unusually short introns: evidence for selection for rapid transcription. , 2005, Trends in genetics : TIG.

[210]  T A Thanaraj,et al.  Human GC-AG alternative intron isoforms with weak donor sites show enhanced consensus at acceptor exon positions. , 2001, Nucleic acids research.

[211]  Yi Xing,et al.  Assessing the impact of alternative splicing on domain interactions in the human proteome. , 2004, Journal of proteome research.

[212]  Michael Lynch,et al.  The evolution of spliceosomal introns. , 2002, Current opinion in genetics & development.

[213]  Hank Tu,et al.  The Genome of Naegleria gruberi Illuminates Early Eukaryotic Versatility , 2010, Cell.

[214]  Christopher J. Lee,et al.  Alternative splicing in the human, mouse and rat genomes is associated with an increased frequency of exon creation and/or loss , 2003, Nature Genetics.

[215]  D J Lipman,et al.  Lineage-specific loss and divergence of functionally linked genes in eukaryotes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[216]  A. Vinogradov Compactness of human housekeeping genes: selection for economy or genomic design? , 2004, Trends in genetics : TIG.

[217]  Boris G. Mirkin,et al.  Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell , 2005, Nucleic acids research.

[218]  J. Deogun,et al.  Method of predicting Splice Sites based on signal interactions , 2006, Biology Direct.

[219]  A Yoshida,et al.  Exon/intron structure of aldehyde dehydrogenase genes supports the "introns-late" theory. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[220]  M. Rosbash,et al.  The DECD box putative ATPase Sub2p is an early mRNA export factor , 2001, Current Biology.

[221]  D. Moreira,et al.  Selective forces for the origin of the eukaryotic nucleus. , 2006, BioEssays : news and reviews in molecular, cellular and developmental biology.

[222]  A. MacMillan,et al.  Pre-mRNA splicing: a complex picture in higher definition. , 2008, Trends in biochemical sciences.

[223]  J. Carlton,et al.  Spliceosomal introns in the deep-branching eukaryote Trichomonas vaginalis. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[224]  Gil Ast,et al.  How did alternative splicing evolve? , 2004, Nature Reviews Genetics.

[225]  Hung D. Nguyen,et al.  New Maximum Likelihood Estimators for Eukaryotic Intron Evolution , 2005, PLoS Comput. Biol..

[226]  Araxi O. Urrutia,et al.  The signature of selection mediated by expression on human genes. , 2003, Genome research.

[227]  E. Koonin,et al.  U12 intron positions are more strongly conserved between animals and plants than U2 intron positions , 2008, Biology Direct.

[228]  L. Rieseberg,et al.  Effective population size is positively correlated with levels of adaptive divergence among annual sunflowers. , 2011, Molecular biology and evolution.

[229]  L K Derr,et al.  The involvement of cellular recombination and repair genes in RNA-mediated recombination in Saccharomyces cerevisiae. , 1998, Genetics.

[230]  J. Garcia-Fernández,et al.  Widespread evolutionary conservation of alternatively spliced exons in Caenorhabditis. , 2008, Molecular biology and evolution.

[231]  David G. Knowles,et al.  High rate of recent intron gain and loss in simultaneously duplicated Arabidopsis genes. , 2006, Molecular biology and evolution.

[232]  Masanori Arita,et al.  Automated classification of alternative splicing and transcriptional initiation and construction of visual database of classified patterns , 2006, Bioinform..

[233]  Igor B. Rogozin,et al.  A Detailed History of Intron-rich Eukaryotic Ancestors Inferred from a Global Survey of 100 Complete Genomes , 2011, PLoS Comput. Biol..

[234]  Hans-Werner Mewes,et al.  Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. , 2003, Nucleic acids research.

[235]  Samuel S. Shepard,et al.  Critical association of ncRNA with introns , 2010, Nucleic acids research.

[236]  M. Soller,et al.  Pre-messenger RNA processing and its regulation: a genomic perspective , 2006, Cellular and Molecular Life Sciences CMLS.

[237]  B. Curtis,et al.  A spliceosomal intron of mitochondrial DNA origin , 2010, Current Biology.

[238]  Andrey A Mironov,et al.  Evolution of exon-intron structure and alternative splicing in fruit flies and malarial mosquito genomes. , 2006, Genome research.

[239]  E. Koonin Intron-dominated genomes of early ancestors of eukaryotes. , 2009, The Journal of heredity.

[240]  L. Chasin,et al.  Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons , 2006, Proceedings of the National Academy of Sciences.

[241]  D. Penny,et al.  Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution. , 2006, Genome research.

[242]  E. Koonin The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? , 2006, Biology Direct.

[243]  Arlin Stoltzfus,et al.  The evolutionary gain of spliceosomal introns: sequence and phase preferences. , 2004, Molecular biology and evolution.

[244]  C. Ponting,et al.  Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. , 2007, Genome research.

[245]  E. Koonin,et al.  Primordial spliceosomal introns were probably U2-type. , 2008, Trends in genetics : TIG.

[246]  D. Black Protein Diversity from Alternative Splicing A Challenge for Bioinformatics and Post-Genome Biology , 2000, Cell.

[247]  M. Lynch Intron evolution as a population-genetic process , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[248]  Abhijit A. Patel,et al.  The splicing of U12‐type introns can be a rate‐limiting step in gene expression , 2002, The EMBO journal.

[249]  J D Palmer,et al.  Intron "sliding" and the diversity of intron positions. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[250]  D. Penny,et al.  An Overview of the Introns-First Theory , 2009, Journal of Molecular Evolution.

[251]  E. Koonin,et al.  Patterns of intron gain and conservation in eukaryotic genes , 2007, BMC Evolutionary Biology.

[252]  M. Rosbash,et al.  Quality control of mRNA 3′-end processing is linked to the nuclear exosome , 2001, Nature.

[253]  W. Gilbert,et al.  On the ancient nature of introns. , 1993, Gene.

[254]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[255]  J. Logsdon,et al.  The recent origins of spliceosomal introns revisited. , 1998, Current opinion in genetics & development.

[256]  D. Burstein,et al.  Large-scale comparative analysis of splicing signals and their corresponding splicing factors in eukaryotes. , 2007, Genome research.

[257]  J. Garcia-Fernández,et al.  Contrasting 5' and 3' Evolutionary Histories and Frequent Evolutionary Convergence in Meis/hth Gene Structures , 2011, Genome biology and evolution.

[258]  Igor B. Rogozin,et al.  Analysis of evolution of exon-intron structure of eukaryotic genes , 2005, Briefings Bioinform..

[259]  Stephen M. Mount,et al.  Evolutionary dynamics of U12-type spliceosomal introns , 2010, BMC Evolutionary Biology.

[260]  R. Reed,et al.  Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals , 1997, The EMBO journal.

[261]  W. Ford Doolittle,et al.  Genes in pieces: were they ever together? , 1978, Nature.

[262]  M. Irimia,et al.  Mystery of intron gain: new data and new models. , 2009, Trends in genetics : TIG.

[263]  S. Berget Exon Recognition in Vertebrate Splicing (*) , 1995, The Journal of Biological Chemistry.

[264]  Boris Lenhard,et al.  Genomic regulatory blocks underlie extensive microsynteny conservation in insects. , 2007, Genome research.

[265]  O. Gotoh,et al.  Comparative analysis of information contents relevant to recognition of introns in many species , 2011, BMC Genomics.

[266]  J. Garcia-Fernández,et al.  Origin of introns by 'intronization' of exonic sequences. , 2008, Trends in genetics : TIG.

[267]  Liran Carmel,et al.  A Universal Nonmonotonic Relationship between Gene Compactness and Expression Levels in Multicellular Eukaryotes , 2009, Genome biology and evolution.

[268]  E. Levanon,et al.  Human housekeeping genes are compact. , 2003, Trends in genetics : TIG.

[269]  Abhijit A. Patel,et al.  Splicing double: insights from the second spliceosome , 2003, Nature Reviews Molecular Cell Biology.

[270]  Sherif Abou Elela,et al.  Introns within Ribosomal Protein Genes Regulate the Production and Function of Yeast Ribosomes , 2011, Cell.

[271]  B. Séraphin,et al.  Who's on first? The U1 snRNP-5' splice site interaction and splicing. , 1991, Trends in biochemical sciences.

[272]  J. Steitz,et al.  A small nucleolar RNA is processed from an intron of the human gene encoding ribosomal protein S3. , 1993, Genes & Development.

[273]  Melissa S Jurica,et al.  Pre-mRNA splicing: awash in a sea of proteins. , 2003, Molecular cell.

[274]  J D Palmer,et al.  Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[275]  J. Steitz,et al.  A mammalian gene with introns instead of exons generating stable RNA products , 1996, Nature.

[276]  M. Meselson,et al.  Massive Horizontal Gene Transfer in Bdelloid Rotifers , 2008, Science.

[277]  M. Long,et al.  Association of intron phases with conservation at splice site sequences and evolution of spliceosomal introns. , 1999, Molecular biology and evolution.

[278]  P. Bork,et al.  Vertebrate-Type Intron-Rich Genes in the Marine Annelid Platynereis dumerilii , 2005, Science.

[279]  Carolyn J. Brown,et al.  Mechanisms of X-chromosome inactivation. , 2006, Frontiers in bioscience : a journal and virtual library.

[280]  H. Stenøien Compact genes are highly expressed in the moss Physcomitrella patens. , 2007, Journal of evolutionary biology.

[281]  W. Doolittle,et al.  The chaperonin genes of jakobid and jakobid-like flagellates: implications for eukaryotic evolution. , 2002, Molecular biology and evolution.

[282]  Alexander V. Favorov,et al.  Conserved and species-specific alternative splicing in mammalian genomes , 2007, BMC Evolutionary Biology.

[283]  Jonathan M. Mudge,et al.  The Origins, Evolution, and Functional Potential of Alternative Splicing in Vertebrates , 2011, Molecular biology and evolution.

[284]  A. Newman,et al.  Evidence that introns arose at proto‐splice sites. , 1989, The EMBO journal.

[285]  Manuel Irimia,et al.  Evolutionary Convergence on Highly-Conserved 3′ Intron Structures in Intron-Poor Eukaryotes and Insights into the Ancestral Eukaryotic Genome , 2008, PLoS genetics.

[286]  D. Penny,et al.  On the incidence of intron loss and gain in paralogous gene families. , 2007, Molecular biology and evolution.

[287]  J. Steitz,et al.  SRprises along a messenger's journey. , 2005, Molecular cell.