Chemoarchitectonics and corticocortical terminations within the superior temporal sulcus of the rhesus monkey: Evidence for subdivisions of superior temporal polysensory cortex

Cortex of the upper bank of the superior temporal sulcus (STS) in macaque monkeys, termed the superior temporal polysensory (STP) region, corresponds largely to architectonic area TPO and is connectionally distinct from adjacent visual areas. To investigate whether or not the STP region contains separate subdivisions, immunostaining for parvalbumin and neurofilament protein (using the SMI‐32 antibody) was compared with patterns of corticocortical terminations in the STS. Chemoarchitectonic results provided evidence for three caudal‐to rostral subdivisions: TPOc, TPOi, and TPOr. Area TPOc was characterized by patchy staining for parvalbumin and SMI‐32 in cortical layers IV/III and III, respectively. Area TPOi had more uniform chemoarchitectonic staining, whereas area TPOr had a thicker layer IV than TPOi. The connectional results showed prefrontal cortex in the location of the frontal eye fields (area8) and dorsal area 46 projected in a columnar pattern to all cortical layers of area TPOc, to layer IV of TPOi, and in a columanr fashion, with a moderate increase in density in layer IV, to TPOr. In TPOc, columns of frontal connections showed a peridicity similar to that of the SMI‐32 staining. The caudal inferior parietal lobule (area 7a) and superior temporal gyrus projected to each subdivision of area TPO, displaying either panlaminar or fourth‐layer terminations. In addition to STP cortex, parvalbumin and SMI‐32 immunostaining allowed identification of caudal visual areas of the STS, including MT, MST, FST, and V4t. These areas received first and sixth‐layer projections from prefrontal cortex and area 7a. © 1995 Wiley‐Liss, Inc.

[1]  J. Kaas,et al.  Tonotopic organization, architectonic fields, and connections of auditory cortex in macaque monkeys , 1993, The Journal of comparative neurology.

[2]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[3]  J. Bullier,et al.  Anatomical segregation of two cortical visual pathways in the macaque monkey , 1990, Visual Neuroscience.

[4]  P. Goldman-Rakic Topography of cognition: parallel distributed networks in primate association cortex. , 1988, Annual review of neuroscience.

[5]  R. M. Siegel,et al.  Corticocortical connections of anatomically and physiologically defined subdivisions within the inferior parietal lobule , 1990, The Journal of comparative neurology.

[6]  D. Pandya,et al.  Frontal lobe connections of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[7]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[8]  R Desimone,et al.  Both striate cortex and superior colliculus contribute to visual properties of neurons in superior temporal polysensory area of macaque monkey. , 1986, Journal of neurophysiology.

[9]  D. Pandya,et al.  Intrinsic connections and architectonics of the superior temporal sulcus in the rhesus monkey , 1989, The Journal of comparative neurology.

[10]  D. Hubel,et al.  Specificity of intrinsic connections in primate primary visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[11]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[12]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[13]  C. Bruce,et al.  Topography of projections to posterior cortical areas from the macaque frontal eye fields , 1995, The Journal of comparative neurology.

[14]  David P. Friedman,et al.  Cortical connections of the somatosensory fields of the lateral sulcus of macaques: Evidence for a corticolimbic pathway for touch , 1986, The Journal of comparative neurology.

[15]  L. Krubitzer,et al.  Connections of somatosensory cortex in megachiropteran bats: The evolution of cortical fields in mammals , 1993, The Journal of comparative neurology.

[16]  C. Bruce,et al.  Smooth eye movements elicited by microstimulation in the primate frontal eye field. , 1993, Journal of neurophysiology.

[17]  J. B. Levitt,et al.  Comparison of intrinsic connectivity in different areas of macaque monkey cerebral cortex. , 1993, Cerebral cortex.

[18]  E G Jones,et al.  Neurochemical gradient along the monkey occipito-temporal cortical pathway. , 1994, Neuroreport.

[19]  P. Goldman-Rakic,et al.  Common cortical and subcortical targets of the dorsolateral prefrontal and posterior parietal cortices in the rhesus monkey: evidence for a distributed neural network subserving spatially guided behavior , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[20]  M. Molinari,et al.  Parvalbumin- and calbindin-containing neurons in the monkey medial geniculate complex: differential distribution and cortical layer specific projections , 1991, Brain Research.

[21]  S. Zeki,et al.  Segregation of pathways leading from area V2 to areas V4 and V5 of macaque monkey visual cortex , 1985, Nature.

[22]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[23]  R E Weller,et al.  Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys , 1991, The Journal of comparative neurology.

[24]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[25]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[26]  D. Pandya,et al.  Efferent cortical connections of multimodal cortex of the superior temporal sulcus in the rhesus monkey , 1992, The Journal of comparative neurology.

[27]  A. Walker,et al.  A cytoarchitectural study of the prefrontal area of the macaque monkey , 1940 .

[28]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[29]  R. Malach,et al.  Cortical hierarchy reflected in the organization of intrinsic connections in macaque monkey visual cortex , 1993, The Journal of comparative neurology.

[30]  Keiji Tanaka,et al.  Polysensory properties of neurons in the anterior bank of the caudal superior temporal sulcus of the macaque monkey. , 1988, Journal of neurophysiology.

[31]  G. Leichnetz Inferior frontal eye field projections to the pursuit-related dorsolateral pontine nucleus and middle temporal area (MT) in the monkey , 1989, Visual Neuroscience.

[32]  H. Komatsu,et al.  Relation of cortical areas MT and MST to pursuit eye movements. I. Localization and visual properties of neurons. , 1988, Journal of neurophysiology.

[33]  K. Akert,et al.  Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique , 1977, The Journal of comparative neurology.

[34]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.

[35]  W. Newsome,et al.  Directional pursuit deficits following lesions of the foveal representation within the superior temporal sulcus of the macaque monkey. , 1987, Journal of neurophysiology.

[36]  J. Morrison,et al.  Monoclonal antibody to neurofilament protein (SMI‐32) labels a subpopulation of pyramidal neurons in the human and monkey neocortex , 1989, The Journal of comparative neurology.

[37]  D. Pandya,et al.  Afferent cortical connections and architectonics of the superior temporal sulcus and surrounding cortex in the rhesus monkey , 1978, Brain Research.

[38]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[39]  Leslie G. Ungerleider,et al.  Organization of visual inputs to the inferior temporal and posterior parietal cortex in macaques , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[40]  K. Rockland,et al.  A reticular pattern of intrinsic connections in primate area V2 (area 18) , 1985, The Journal of comparative neurology.

[41]  J. Morrison,et al.  Neurofilament protein defines regional patterns of cortical organization in the macaque monkey visual system: A quantitative immunohistochemical analysis , 1995, The Journal of comparative neurology.

[42]  John H. R. Maunsell,et al.  The middle temporal visual area in the macaque: Myeloarchitecture, connections, functional properties and topographic organization , 1981, The Journal of comparative neurology.

[43]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  A. Fuchs,et al.  Eye movements evoked by stimulation of frontal eye fields. , 1969, Journal of neurophysiology.

[45]  S. Hsu,et al.  Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures. , 1981, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[46]  Malcolm P. Young,et al.  Objective analysis of the topological organization of the primate cortical visual system , 1992, Nature.

[47]  D. Hubel,et al.  Anatomy and physiology of a color system in the primate visual cortex , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[49]  L Krubitzer,et al.  Convergence of processing channels in the extrastriate cortex of monkeys , 1990, Visual Neuroscience.

[50]  D. C. Essen,et al.  The topographic organization of rhesus monkey prestriate cortex. , 1978, The Journal of physiology.

[51]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[52]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[53]  K. Rockland,et al.  Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey , 1979, Brain Research.

[54]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[55]  Leslie G. Ungerleider,et al.  Projections to the superior temporal sulcus from the central and peripheral field representations of V1 and V2 , 1986, The Journal of comparative neurology.

[56]  H. Komatsu,et al.  Modulation of pursuit eye movements by stimulation of cortical areas MT and MST. , 1989, Journal of neurophysiology.

[57]  J. Morrison,et al.  Parvalbumin in the monkey striate cortex: a quantitative immunoelectron-microscopy study , 1991, Brain Research.

[58]  D. V. van Essen,et al.  Antibody labeling of functional subdivisions in visual cortex: Cat-301 immunoreactivity in striate and extrastriate cortex of the macaque monkey , 1990, Visual Neuroscience.

[59]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[60]  M. Young The organization of neural systems in the primate cerebral cortex , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[61]  John H. R. Maunsell,et al.  How parallel are the primate visual pathways? , 1993, Annual review of neuroscience.

[62]  D H Hubel,et al.  Connections between layer 4B of area 17 and the thick cytochrome oxidase stripes of area 18 in the squirrel monkey , 1987, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[63]  L A Krubitzer,et al.  Frontal eye field as defined by intracortical microstimulation in squirrel monkeys, owl monkeys, and macaque monkeys II. cortical connections , 1986, The Journal of comparative neurology.

[64]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[65]  J. DeFelipe,et al.  Parvalbumin immunoreactivity reveals layer IV of monkey cerebral cortex as a mosaic of microzones of thalamic afferent terminations , 1991, Brain Research.

[66]  Leslie G. Ungerleider,et al.  The modular organization of projections from areas V1 and V2 to areas V4 and TEO in macaques , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[67]  E. DeYoe,et al.  Segregation of efferent connections and receptive field properties in visual area V2 of the macaque , 1985, Nature.

[68]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[69]  E. G. Jones,et al.  Chemically distinct compartments of the thalamic VPM nucleus in monkeys relay principal and spinal trigeminal pathways to different layers of the somatosensory cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[70]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[71]  J. Kaas,et al.  Subdivisions and connections of auditory cortex in owl monkeys , 1992, The Journal of comparative neurology.

[72]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[73]  M. Mesulam,et al.  Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. , 1978, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[74]  C. Geula,et al.  Architecture of connectivity within a cingulo-fronto-parietal neurocognitive network for directed attention. , 1993, Archives of neurology.

[75]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: II. Evidence for segregated corticocortical networks linking sensory and limbic areas with the frontal lobe , 1989, The Journal of comparative neurology.

[76]  D. Pandya,et al.  Post‐rolandic cortical projections of the superior temporal sulcus in the rhesus monkey , 1991, The Journal of comparative neurology.

[77]  E. G. Jones,et al.  Differential Calcium Binding Protein Immunoreactivity Distinguishes Classes of Relay Neurons in Monkey Thalamic Nuclei , 1989, The European journal of neuroscience.

[78]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[79]  Sm Hus Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabeled antibody (PAP) procedures , 1981 .

[80]  P. Goldman-Rakic,et al.  Posterior parietal cortex in rhesus monkey: I. Parcellation of areas based on distinctive limbic and sensory corticocortical connections , 1989, The Journal of comparative neurology.

[81]  C. Bruce,et al.  Smooth-pursuit eye movement representation in the primate frontal eye field. , 1991, Cerebral cortex.

[82]  C. Bruce,et al.  Primate frontal eye fields. II. Physiological and anatomical correlates of electrically evoked eye movements. , 1985, Journal of neurophysiology.

[83]  D. Pandya,et al.  Parietal, temporal, and occipita projections to cortex of the superior temporal sulcus in the rhesus monkey: A retrograde tracer study , 1994, The Journal of comparative neurology.

[84]  J. Morrison,et al.  Distribution of parvalbumin immunoreactivity in the visual cortex of Old World monkeys and humans , 1990, The Journal of comparative neurology.

[85]  P. Goldman-Rakic,et al.  Distribution of cat‐301 immunoreactivity in the frontal and parietal lobes of the macaque monkey , 1989, The Journal of comparative neurology.

[86]  A. Hendrickson,et al.  The autoradiographic demonstration of axonal connections in the central nervous system. , 1972, Brain research.