Analysis of the wind regime at high spatial-temporal resolution in the itacaiúnas river watershed, eastern amazon

In the present study, hourly wind direction and speed data from six subregions along the Itacaiúnas River watershed (IRW), Eastern Amazon, are analyzed over a 1-year period. The data are acquired from six hydrometeorological stations located in areas of the IRW with different characteristics of land use and plant cover. Among the stations studied, Serra Leste (mine to pasture transition) stands out, with prevailing winds from the Southeast and the East-Southeast, in addition to higher wind speeds. In contrast, at the Salobo (forest) station, the lowest wind speeds are observed, and this station presents the highest percentage of calm winds (60%) in the series. In the analysis of the daytime (from 6 a.m. to 5 p.m.) and nighttime (from 6 p.m. to 5 a.m.) wind cycles, the breeze and mesoscale circulation system are identified. Predominantly northerly winds are observed acting on the Abadia Farm and IFPA Rural (Federal Institute of Education, Science and Technology of Pará) stations, both during the day and at night, overlapping with the local breeze effects. Daily (24 h) and associated breeze circulation (12 h) cycle frequency signals are identified through wavelet transform analyses of the wind for all stations. The interference from large-scale phenomena, such as the Intertropical Convergence Zone (ITCZ) and the South Atlantic Convergence Zone (SACZ), which operate in the region, is evident. Finally, the data show that the differences in wind patterns are also due to environmental aspects such as plant cover, land use, and topography.

[1]  Dimas de Barros Santiago,et al.  The wind regime over the Brazilian Southeast: Spatial and temporal characterization using multivariate analysis , 2021, International Journal of Climatology.

[2]  Ward Quaghebeur,et al.  Arsenic contamination in rainwater harvesting tanks around Lake Poopó in Oruro, Bolivia: An unrecognized health risk. , 2019, The Science of the total environment.

[3]  A. Tavares,et al.  Rosa dos ventos da estação Sossego dos anos de 2017 e 2018: resultados de monitoramento da estação Sossego (Canaã dos Carajás - PA) , 2019 .

[4]  K. Kawanisi,et al.  Characteristics of Tidal Discharge and Phase Difference at a Tidal Channel Junction Investigated Using the Fluvial Acoustic Tomography System , 2019, Water.

[5]  Samíria Maria Oliveira da Silva,et al.  Análise da Relação entre a Precipitação Média do Reservatório Orós, Brasil - Ceará, e os índices PDO e AMO Através da Análise de Changepoints e Transformada de Ondeletas , 2019, Revista Brasileira de Meteorologia.

[6]  C. Driscoll,et al.  Primary effects of changes in meteorology vs. anthropogenic emissions on mercury wet deposition: A modeling study , 2019, Atmospheric Environment.

[7]  R. Dall’Agnol,et al.  The role of protected and deforested areas in the hydrological processes of Itacaiúnas River Basin, eastern Amazonia. , 2019, Journal of environmental management.

[8]  R. Dall’Agnol,et al.  CLIMATE INDICATORS FOR A WATERSHED IN THE EASTERN AMAZON , 2018, Revista Brasileira de Climatologia.

[9]  C. R. Musis,et al.  Topoclimate in Morlet, Cross and Coherence Wavelet Analyses in the Brazilian Cerrado , 2018, Floresta e Ambiente.

[10]  M. Zeri,et al.  Exposure assessment of rainfall to interannual variability using the wavelet transform , 2018, International Journal of Climatology.

[11]  Kasra Mohammadi,et al.  Study of inter-correlations of solar radiation, wind speed and precipitation under the influence of El Niño Southern Oscillation (ENSO) in California , 2018 .

[12]  Renato O. Silva,et al.  Three decades of reference evapotranspiration estimates for a tropical watershed in the eastern Amazon. , 2017, Anais da Academia Brasileira de Ciencias.

[13]  D. D. S. Ferreira,et al.  Estimativa de precipitação e vazões médias para a bacia hidrográfica do rio Itacaiúnas (BHRI), Amazônia Oriental, Brasil (Estimation of Precipitation and average Flows for the Itacaiúnas River Watershed (IRW) - Eastern Amazonia, Brazil) , 2017 .

[14]  Bergson Cavalcanti de Moraes,et al.  PADRÕES CLIMATOLÓGICOS E TENDÊNCIAS DA PRECIPITAÇÃO NOS REGIMES CHUVOSO E SECO DA AMAZÔNIA ORIENTAL , 2017 .

[15]  P. Oliveira,et al.  Diurnal variability of inner-shelf circulation in the lee of a cape under upwelling conditions , 2017 .

[16]  Djane Fonseca da Silva Aplicação de Análises de Ondaletas para Detecção de Ciclos e Extremos Pluviométricos no Leste do Nordeste do Brasil , 2017 .

[17]  D. Watts,et al.  How does El Niño Southern Oscillation impact the wind resource in Chile? A techno-economical assessment of the influence of El Niño and La Niña on the wind power , 2017 .

[18]  D. Bitencourt,et al.  Análise de Variáveis Atmosféricas Observadas em Alta Resolução Espaço-Temporal Durante um Experimento de 30 Dias na Mesorregião da Ilha de Santa Catarina , 2016 .

[19]  Xiufeng He,et al.  Water Availability of São Francisco River Basin Based on a Space-Borne Geodetic Sensor , 2016 .

[20]  R. Dall’Agnol,et al.  Four decades of land-cover, land-use and hydroclimatology changes in the Itacaiúnas River watershed, southeastern Amazon. , 2016, Journal of environmental management.

[21]  B. C. D. Moraes,et al.  TELECONEXÕES OCEÂNICAS NOS PADRÕES CLIMATOLÓGICOS DA AMAZÔNIA ORIENTAL: ANÁLISE DOS ÚLTIMOS 40 ANOS (1974-2013) (OCEAN CLIMATOLOGICAL TELECONNECTIONS IN STANDARDS OF EASTERN AMAZON: ANALYSIS OF THE LAST 40 YEARS (1974-2013).) , 2015 .

[22]  Paulo Sérgio Lucio,et al.  Precipitation regionalization of the Brazilian Amazon , 2015 .

[23]  D. Roelvink,et al.  River-tide dynamics : Exploration of nonstationary and nonlinear tidal behavior in the Yangtze River estuary , 2015 .

[24]  Everaldo Barreiros de Souza,et al.  Spatial and Temporal Variability of Rainfall in Eastern Amazon during the Rainy Season , 2015, TheScientificWorldJournal.

[25]  M. A. L. Moura,et al.  Estudo dos Padrões Climatológicos do Vento Usando Transformada em Ondeletas (A Study of the Climatological Patterns of the Wind Using Wavelet Transform) , 2014 .

[26]  E. Jarosz,et al.  Wavelet analysis of near-inertial currents at the East Flower Garden Bank , 2014 .

[27]  M. Silva,et al.  Caracterização do Regime de Vento em Superfície na Região Metropolitana do Rio de Janeiro , 2014 .

[28]  M. Lopes CLIMATOLOGIA REGIONAL DA PRECIPITAÇÃO NO ESTADO DO PARÁ , 2013 .

[29]  J. Stape,et al.  Köppen's climate classification map for Brazil , 2013 .

[30]  Maricéia Tatiana Vilani,et al.  Análise de Fourier e Wavelets aplicada à temperatura do ar em diferentes tipologias de ocupação , 2013 .

[31]  A. Andrade,et al.  Dinâmica do Escoamento de Ar Acima e Dentro de uma Floresta Tropical Densa sobre Terreno Complexo na Amazônia (Dynamics of Airflow Above and Within a Tropical Rainforest Canopy Dense in the Complex Terrain on Amazonia) , 2013 .

[32]  F. Valero,et al.  Wintertime connections between extreme wind patterns in Spain and large-scale geopotential height field , 2013 .

[33]  E. Marchioro,et al.  O COMPORTAMENTO DOS VENTOS EM VITÓRIA (ES): A GESTÃO E INTERPRETAÇÃO DOS DADOS CLIMATOLÓGICOS , 2012 .

[34]  M. I. Vitorino,et al.  Variabilidade da precipitação em tempo e espaço associada à Zona de Convergência Intertropical , 2012 .

[35]  É. Deleersnijder,et al.  Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta , 2011 .

[36]  Gabriel Constantino Blain,et al.  118 ANOS DE DADOS MENSAIS DO ÍNDICE PADRONIZADO DE PRECIPITAÇÃO: SÉRIE METEOROLÓGICA DE CAMPINAS, ESTADO DE SÃO PAULO , 2011 .

[37]  E. Costa,et al.  ESTUDO DE VARIABILIDADE DO VENTO EM ESCALA SAZONAL SOBRE O NORDESTE BRASILEIRO UTILIZANDO O RAMS: OS CASOS DE 1973-1974 E 1982-1983 , 2011 .

[38]  E. Echer,et al.  Wavelet analysis of a centennial (1895–1994) southern Brazil rainfall series (Pelotas, 31°46′19″S 52°20′ 33″W) , 2008 .

[39]  P. L. da Silva Dias,et al.  Observational study of the seasonality of the submonthly and intraseasonal signal over the tropics , 2006 .

[40]  Bergson Cavalcanti de Moraes,et al.  Variação espacial e temporal da precipitação no Estado do Pará , 2005 .

[41]  T. Ambrizzi,et al.  Intraseasonal and submonthly variability over the Eastern Amazon and Northeast Brazil during the autumn rainy season , 2005 .

[42]  Carlos A. Nobre,et al.  Environmental Conditions Associated with Amazonian Squall Lines: A Case Study , 1995 .

[43]  Ka-Ming Lau,et al.  Wavelets, Period Doubling, and Time–Frequency Localization with Application to Organization of Convection over the Tropical Western Pacific , 1994 .

[44]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[45]  Celso Augusto Guimarães Santos,et al.  A Transformada Wavelet e sua Aplicação na Análise de Séries Hidrológicas , 2013 .

[46]  Regional climate , 2011 .

[47]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[48]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .