Anisotropic dispersion with a consistent smoothed particle hydrodynamics scheme

[1]  N. Phan-Thien,et al.  Simulation of anisotropic diffusion processes in fluids with smoothed particle hydrodynamics , 2016 .

[2]  F. Cruz,et al.  A new insight into the consistency of the SPH interpolation formula , 2016, Appl. Math. Comput..

[3]  Leonardo Di G. Sigalotti,et al.  On the kernel and particle consistency in smoothed particle hydrodynamics , 2016, 1605.05245.

[4]  A. Bellin,et al.  Smooth Particle Hydrodynamics with nonlinear Moving-Least-Squares WENO reconstruction to model anisotropic dispersion in porous media , 2015 .

[5]  Stephen M. Longshaw,et al.  DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH) , 2015, Comput. Phys. Commun..

[6]  L. Hernquist,et al.  NUMERICAL CONVERGENCE IN SMOOTHED PARTICLE HYDRODYNAMICS , 2014, 1410.4222.

[7]  Michael Dumbser,et al.  A new class of Moving-Least-Squares WENO-SPH schemes , 2014, J. Comput. Phys..

[8]  T. Chai,et al.  Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature , 2014 .

[9]  S. Rosswog SPH Methods in the Modelling of Compact Objects , 2014, 1406.4224.

[10]  Roger Beckie,et al.  An assessment of particle methods for approximating anisotropic dispersion , 2013 .

[11]  Benedict D. Rogers,et al.  SPHysics - development of a free-surface fluid solver - Part 1: Theory and formulations , 2012, Comput. Geosci..

[12]  W. Dehnen,et al.  Improving convergence in smoothed particle hydrodynamics simulations without pairing instability , 2012, 1204.2471.

[13]  Prabhakar Sharma,et al.  Gas Dispersion and Immobile Gas Content in Granular Porous Media: Effect of Particle Size Nonuniformity , 2010 .

[14]  Allen G. Hunt,et al.  Predicting dispersion in porous media , 2010, Complex..

[15]  Jeffrey Lewis,et al.  Optimizing the experimental design of soil columns in saturated and unsaturated transport experiments. , 2010, Journal of contaminant hydrology.

[16]  V. Méndez,et al.  Reaction-Transport Systems: Mesoscopic Foundations, Fronts, and Spatial Instabilities , 2010 .

[17]  O. Agertz,et al.  Resolving mixing in smoothed particle hydrodynamics , 2009, 0906.0774.

[18]  Afzal Suleman,et al.  SPH with the multiple boundary tangent method , 2009 .

[19]  Marco Massabò,et al.  A meshless method to simulate solute transport in heterogeneous porous media , 2009 .

[20]  Daniil Svyatskiy,et al.  Interpolation-free monotone finite volume method for diffusion equations on polygonal meshes , 2009, J. Comput. Phys..

[21]  Zhiqiang Sheng,et al.  Monotone finite volume schemes for diffusion equations on polygonal meshes , 2008, J. Comput. Phys..

[22]  T. Poulsen,et al.  SIMPLE AND RAPID METHOD FOR MEASURING GAS DISPERSION IN POROUS MEDIA: METHODOLOGY AND APPLICATIONS , 2008 .

[23]  Louis J. Durlofsky,et al.  Unstructured grid optimization for improved monotonicity of discrete solutions of elliptic equations with highly anisotropic coefficients , 2006, J. Comput. Phys..

[24]  Christophe Le Potier,et al.  Schéma volumes finis monotone pour des opérateurs de diffusion fortement anisotropes sur des maillages de triangles non structurés , 2005 .

[25]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[26]  Ivar Aavatsmark,et al.  Monotonicity conditions for control volume methods on uniform parallelogram grids in homogeneous media , 2005 .

[27]  Anthony Beaudoin,et al.  Simulation of anisotropic diffusion by means of a diffusion velocity method , 2003 .

[28]  Pep Español,et al.  Smoothed dissipative particle dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  Petros Koumoutsakos,et al.  Simulation of pollutant transport using a particle method , 2001 .

[30]  A. Heathwaite,et al.  Transport of nitrogen in soil water following the application of animal manures to sloping grassland , 2000 .

[31]  F. Rasio Particle Methods in Astrophysical Fluid Dynamics , 1999, astro-ph/9911360.

[32]  A. Compte,et al.  The generalized Cattaneo equation for the description of anomalous transport processes , 1997 .

[33]  J. Morris,et al.  Modeling Low Reynolds Number Incompressible Flows Using SPH , 1997 .

[34]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[35]  Pierre Degond,et al.  A Deterministic Approximation of Diffusion Equations Using Particles , 1990, SIAM J. Sci. Comput..

[36]  P. Degond,et al.  The weighted particle method for convection-diffusion equations , 1989 .

[37]  P. Degond,et al.  The weighted particle method for convection-diffusion equations. II. The anisotropic case , 1989 .

[38]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[39]  E. Montroll,et al.  Anomalous transit-time dispersion in amorphous solids , 1975 .

[40]  J. Bear Dynamics of Fluids in Porous Media , 1975 .

[41]  A. Scheidegger General Theory of Dispersion in Porous Media , 1961 .

[42]  C. Cattaneo,et al.  Sulla Conduzione Del Calore , 2011 .

[43]  Virginie Grandgirard,et al.  TOKAM-3D: A 3D fluid code for transport and turbulence in the edge plasma of Tokamaks , 2010, J. Comput. Phys..

[44]  Gui-Rong Liu,et al.  Restoring particle consistency in smoothed particle hydrodynamics , 2006 .

[45]  P. Cleary,et al.  Conduction Modelling Using Smoothed Particle Hydrodynamics , 1999 .

[46]  John F. Brady,et al.  Dispersion in Porous Media , 1988 .

[47]  John F. Brady,et al.  Nonlocal dispersion in porous media: Nonmechanical effects , 1987 .