Extended TA Algorithm for Adapting a Situation Ontology

In this work we introduce an improved version of a learning algorithm for the automatic adaption of a situation ontology (TAA) [1] which extends the basic principle of the learning algorithm. The approach bases on the assumption of uncertain data and includes elements from the domain of Bayesian Networks and Machine Learning. It is embedded into the cluster of excellence Nexus at the University of Stuttgart which has the aim to build a distributed context aware system for sharing context data.

[1]  James F. Allen Maintaining knowledge about temporal intervals , 1983, CACM.

[2]  Alois Ferscha,et al.  Recognizing and Predicting Context by Learning from User Behavior 1 , 2003 .

[3]  Paul J. Kühn,et al.  SFB 627 – Umgebungsmodelle für mobile kontextbezogene Systeme , 2006, Informatik - Forschung und Entwicklung.

[4]  Kurt Rothermel,et al.  Making the World Wide Space happen: New challenges for the Nexus context platform , 2009, 2009 IEEE International Conference on Pervasive Computing and Communications.

[5]  Brian C. Williams,et al.  Diagnosing Multiple Faults , 1987, Artif. Intell..

[6]  Aimin Hou,et al.  A Theory of Measurement in Diagnosis from First Principles , 1994, Artif. Intell..

[7]  Paul Levi,et al.  Supervised learning algorithm for automatic adaption of situation templates using uncertain data , 2009, ICIS '09.

[8]  Trent Apted,et al.  Automatic construction of learning ontologies , 2002, International Conference on Computers in Education, 2002. Proceedings..

[9]  Raymond Reiter,et al.  A Theory of Diagnosis from First Principles , 1986, Artif. Intell..

[10]  Christian Becker,et al.  Sonderforschungsbereich 627: Nexus – Umgebungsmodelle für mobile kontextbezogene Systeme (Spatial World Models for Mobile Context-aware Systems) , 2003, it Inf. Technol..

[11]  Sunil Prabhakar,et al.  Managing uncertainty in sensor database , 2003, SGMD.

[12]  Martin A. Riedmiller,et al.  Advanced supervised learning in multi-layer perceptrons — From backpropagation to adaptive learning algorithms , 1994 .

[13]  Steffen Staab,et al.  Ontology Learning for the Semantic Web , 2002, IEEE Intell. Syst..

[14]  Johan de Kleer,et al.  Using Crude Probability Estimates to Guide Diagnosis , 1990, Artif. Intell..

[15]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.