Bilateral pedicle screw fixation provides superior biomechanical stability in transforaminal lumbar interbody fusion: a finite element study.

BACKGROUND CONTEXT Transforaminal lumbar interbody fusion (TLIF) is increasingly popular for the surgical treatment of degenerative lumbar disease. The optimal construct for segmental stability remains unknown. PURPOSE To compare the stability of fusion constructs using standard (C) and crescent-shaped (CC) polyetheretherketone TLIF cages with unilateral (UPS) or bilateral (BPS) posterior instrumentation. STUDY DESIGN Five TLIF fusion constructs were compared using finite element (FE) analysis. METHODS A previously validated L3-L5 FE model was modified to simulate decompression and fusion at L4-L5. This model was used to analyze the biomechanics of various unilateral and bilateral TLIF constructs. The inferior surface of the L5 vertebra remained immobilized throughout the load simulation, and a bending moment of 10 Nm was applied on the L3 vertebra to recreate flexion, extension, lateral bending, and axial rotation. Various biomechanical parameters were evaluated for intact and implanted models in all loading planes. RESULTS All reconstructive conditions displayed decreased motion at L4-L5. Bilateral posterior fixation conferred greater stability when compared with unilateral fixation in left lateral bending. More than 50% of intact motion remained in the left lateral bending with unilateral posterior fixation compared with less than 10% when bilateral pedicle screw fixation was used. Posterior implant stresses for unilateral fixation were six times greater in flexion and up to four times greater in left lateral bending compared with bilateral fixation. No effects on segmental stability or posterior implant stresses were found. An obliquely-placed, single standard cage generated the lowest cage-end plate stress. CONCLUSIONS Transforaminal lumbar interbody fusion augmentation with bilateral posterior fixation increases fusion construct stability and decreases posterior instrumentation stress. The shape or number of interbody implants does not appear to impact the segmental stability when bilateral pedicle screws are used. Increased posterior instrumentation stresses were observed in all loading modes with unilateral pedicle screw/rod fixation, which may theoretically accelerate implant loosening or increase the risk of construct failure.

[1]  T. Zdeblick,et al.  Interbody Cage Devices , 2003, Spine.

[2]  A. Faundez Re: Ames CP, Acosta FL Jr, Chi J, et al. Biomechanical comparison of posterior lumbar interbody fusion and transforaminal lumbar interbody fusion performed at 1 and 2 levels. Spine 2005;30:E562-6. , 2006, Spine.

[3]  B. Cunningham,et al.  The biomechanical significance of anterior column support in a simulated single-level spinal fusion. , 2000, Journal of spinal disorders.

[4]  Y. Tsuang,et al.  Comparison of cage application modality in posterior lumbar interbody fusion with posterior instrumentation--a finite element study. , 2009, Medical engineering & physics.

[5]  Shih-Tien Wang,et al.  Posterior Instrumentation Reduces Differences in Spine Stability as a Result of Different Cage Orientations: An in Vitro Study , 2005, Spine.

[6]  Jae Yong Ahn,et al.  Effects of Rigidity of an Internal Fixation Device A Comprehensive Biomechanical Investigation , 1991, Spine.

[7]  M M Panjabi,et al.  Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. , 1994, The Journal of bone and joint surgery. American volume.

[8]  Kent N Bachus,et al.  Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis. , 2006, The spine journal : official journal of the North American Spine Society.

[9]  Paul Park,et al.  Adjacent Segment Disease after Lumbar or Lumbosacral Fusion: Review of the Literature , 2004, Spine.

[10]  J. W. Duncan,et al.  An analysis of fusion cage migration in unilateral and bilateral fixation with transforaminal lumbar interbody fusion , 2013, European Spine Journal.

[11]  T. Lowe,et al.  A Biomechanical Study of Regional Endplate Strength and Cage Morphology as It Relates to Structural Interbody Support , 2004, Spine.

[12]  Hua-ming Xue,et al.  Comparison of unilateral versus bilateral instrumented transforaminal lumbar interbody fusion in degenerative lumbar diseases. , 2012, The spine journal : official journal of the North American Spine Society.

[13]  N. Haas,et al.  Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion. , 2008, Journal of neurosurgery. Spine.

[14]  Cheng-Kung Cheng,et al.  Biomechanical Comparison of Instrumented Posterior Lumbar Interbody Fusion With One or Two Cages by Finite Element Analysis , 2006, Spine.

[15]  B. Cunningham,et al.  1989 Volvo Award in Basic Science: Device-Related Osteoporosis with Spinal Instrumentation , 1989, Spine.

[16]  Ying Xiao,et al.  Unilateral Transforaminal Lumbar Interbody Fusion: A Review of the Technique, Indications and Graft Materials , 2009, The Journal of international medical research.

[17]  Stephen J. Ferguson,et al.  Factors influencing stresses in the lumbar spine after the insertion of intervertebral cages: finite element analysis , 2003, European Spine Journal.

[18]  Chunhui Wu,et al.  Comparison of cage designs for transforaminal lumbar interbody fusion: a biomechanical study. , 2008, Clinical biomechanics.

[19]  Thomas R. Oxland,et al.  Interbody cage stabilisation in the lumbar spine: biomechanical evaluation of cage design, posterior instrumentation and bone density , 1998 .

[20]  F. Pei,et al.  Comparative study of PILF and TLIF treatment in adult degenerative spondylolisthesis , 2008, European Spine Journal.

[21]  T. Lowe,et al.  Unilateral Transforaminal Posterior Lumbar Interbody Fusion (TLIF): Indications, Technique, and 2-Year Results , 2002, Journal of spinal disorders & techniques.

[22]  Norman W. Gill,et al.  Effect of multilevel lumbar disc arthroplasty on the operative- and adjacent-level kinematics and intradiscal pressures: an in vitro human cadaveric assessment. , 2008, The spine journal.

[23]  D. Polly,et al.  Transforaminal Lumbar Interbody Fusion: Clinical and Radiographic Results and Complications in 100 Consecutive Patients , 2005, Journal of spinal disorders & techniques.

[24]  G. Bagby Arthrodesis by the distraction-compression method using a stainless steel implant. , 1988, Orthopedics.

[25]  J L Lewis,et al.  The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion. , 1993, Spine.

[26]  P. A. Cripton,et al.  Compressive strength of interbody cages in the lumbar spine: the effect of cage shape, posterior instrumentation and bone density , 1998, European Spine Journal.

[27]  B. Cunningham,et al.  The Effect of Spinal Implant Rigidity on Vertebral Bone Density A Canine Mode , 1991, Spine.

[28]  A. Patwardhan,et al.  Test protocols for evaluation of spinal implants. , 2006, The Journal of bone and joint surgery. American volume.

[29]  J. Weinstein,et al.  Isolated L4-L5 fusions using the variable screw placement system: unilateral versus bilateral. , 1992, Journal of spinal disorders.

[30]  H. Deutsch,et al.  Minimally invasive transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. , 2006, Neurosurgical focus.

[31]  W. Lo,et al.  Stress analysis of the disc adjacent to interbody fusion in lumbar spine. , 2001, Medical engineering & physics.

[32]  Vijay K. Goel,et al.  Biomechanical Rationale for Using Polyetheretherketone (PEEK) Spacers for Lumbar Interbody Fusion–A Finite Element Study , 2006, Spine.

[33]  Jonathan A Tuttle,et al.  Paramedian approach for transforaminal lumbar interbody fusion with unilateral pedicle screw fixation. Technical note and preliminary report on 47 cases. , 2006, Neurosurgical focus.

[34]  S. Ohtori,et al.  A prospective randomized controlled study comparing transforaminal lumbar interbody fusion techniques for degenerative spondylolisthesis: unilateral pedicle screw and 1 cage versus bilateral pedicle screws and 2 cages. , 2012, Journal of neurosurgery. Spine.

[35]  Javier Gil,et al.  A Prospective Randomized Study of Unilateral Versus Bilateral Instrumented Posterolateral Lumbar Fusion in Degenerative Spondylolisthesis , 2007, Spine.

[36]  L. Claes,et al.  In Vitro Stabilizing Effect of a Transforaminal Compared With Two Posterior Lumbar Interbody Fusion Cages , 2005, Spine.

[37]  Wen-Chi Tsai,et al.  Biomechanical comparison of unilateral and bilateral pedicle screws fixation for transforaminal lumbar interbody fusion after decompressive surgery -- a finite element analysis , 2012, BMC Musculoskeletal Disorders.

[38]  Xiang-Yang Wang,et al.  A Systematic Review and Meta-Analysis of Unilateral versus Bilateral Pedicle Screw Fixation in Transforaminal Lumbar Interbody Fusion , 2014, PloS one.

[39]  J. Chi,et al.  Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion Performed at 1 and 2 Levels , 2005, Spine.

[40]  T. J. Lim,et al.  Biomechanical comparison of single-level posterior versus transforaminal lumbar interbody fusions with bilateral pedicle screw fixation: segmental stability and the effects on adjacent motion segments. , 2010, Journal of neurosurgery. Spine.

[41]  S. Hodges,et al.  Transforaminal lumbar interbody fusion: a retrospective study of long-term pain relief and fusion outcomes. , 2007, Orthopedics.

[42]  D. Grob,et al.  Circumferential fusion of the lumbar and lumbosacral spinet , 2004, Archives of Orthopaedic and Trauma Surgery.

[43]  Jean-Pierre Mobasser,et al.  Unilateral pedicle screw instrumentation for minimally invasive transforaminal lumbar interbody fusion. , 2006, Neurosurgical focus.

[44]  S. Kuh,et al.  Unilateral versus bilateral percutaneous pedicle screw fixation in minimally invasive transforaminal lumbar interbody fusion. , 2013, Neurosurgical focus.

[45]  L. Claes,et al.  IN VITRO STUDY OF BIOMECHANICAL BEHAVIOR OF ANTERIOR AND TRANSFORAMINAL LUMBAR INTERBODY INSTRUMENTATION TECHNIQUES , 2006, Neurosurgery.

[46]  Jürgen G. Harms,et al.  Die posteriore, lumbale, interkorporelle Fusion in unilateraler transforaminaler Technik , 1998, Operative Orthopädie und Traumatologie.

[47]  K. Suk,et al.  Unilateral versus bilateral pedicle screw fixation in lumbar spinal fusion. , 2000, Spine.

[48]  S. Siegler,et al.  Transforaminal Lumbar Interbody Fusion: The Effect of Various Instrumentation Techniques on the Flexibility of the Lumbar Spine , 2004, Spine.

[49]  N. Crawford,et al.  Biomechanics of unilateral compared with bilateral lumbar pedicle screw fixation for stabilization of unilateral vertebral disease. , 2008, Journal of neurosurgery. Spine.

[50]  P. Mummaneni,et al.  Transforaminal Lumbar Interbody Fusion: Technique, Complications, and Early Results , 2001, Neurosurgery.

[51]  T. Lund,et al.  Biomechanics of stand-alone cages and cages in combination with posterior fixation: a literature review , 2000, European Spine Journal.

[52]  Hsiang-Ho Chen,et al.  Biomechanical Analysis of Unilateral Fixation With Interbody Cages , 2005, Spine.