Performance characterization of clustering algorithms for colour image segmentation

This paper details the implementation of three traditional clustering techniques (K-Means clustering, Fuzzy C-Means clustering and Adaptive K-Means clustering) that are applied to extract the colour information that is used in the image segmentation process. The aim of this paper is to evaluate the performance of the analysed colour clustering techniques for the extraction of optimal features from colour spaces and investigate which method returns the most consistent results when applied on a large suite of mosaic images.

[1]  Paul F. Whelan,et al.  Integration of feature distributions for colour texture segmentation , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[2]  Josef Kittler,et al.  Histogram-based segmentation in a perceptually uniform color space , 1998, IEEE Trans. Image Process..

[3]  Joachim M. Buhmann,et al.  Parametric Distributional Clustering for Image Segmentation , 2002, ECCV.

[4]  Hichem Frigui,et al.  Clustering by competitive agglomeration , 1997, Pattern Recognit..

[5]  Sridhar Lakshmanan,et al.  Simultaneous Parameter Estimation and Segmentation of Gibbs Random Fields Using Simulated Annealing , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  W. Peizhuang Pattern Recognition with Fuzzy Objective Function Algorithms (James C. Bezdek) , 1983 .

[7]  Frank Y. Shih,et al.  Automatic seeded region growing for color image segmentation , 2005, Image Vis. Comput..

[8]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[9]  Ovidiu Ghita,et al.  MRI diffusion-based filtering: a note on performance characterisation. , 2005, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[10]  James C. Bezdek,et al.  Optimal Fuzzy Partitions: A Heuristic for Estimating the Parameters in a Mixture of Normal Distributions , 1975, IEEE Transactions on Computers.

[11]  Jayanta Mukherjee MRF clustering for segmentation of color images , 2002, Pattern Recognit. Lett..

[12]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[13]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[14]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..