Ternary Rare-Earth-Metal Nickel Indides RE23Ni7In4 (RE = Gd, Tb, Dy) with Yb23Cu7Mg4-Type Structure.

The ternary rare-earth-metal nickel indides RE23Ni7In4 (RE = Gd, Tb, Dy) were prepared by arc-melting mixtures of the elements followed by annealing at 870 K. They adopt the Yb23Cu7Mg4-type structure (space group P63/mmc, Pearson symbol hP68, Z = 2), as determined by laboratory and synchrotron powder diffraction methods for RE = Gd (a = 9.6435(10) Å, c = 22.118(3) Å) and Tb (a = 9.5695(8) Å, c = 21.983(3) Å), and single-crystal X-ray diffraction methods for RE = Dy (a = 9.533(5) Å, c = 21.890(13) Å). The centrosymmetric Yb23Cu7Mg4-type structure is closely related to the noncentrosymmetric Pr23Ir7Mg4-type structure. Triangular In3 clusters within RE23Ni7In4 represent a rare type of cluster found among metal-rich indides; the reasons for their formation were investigated by density functional theory methods.

[1]  A. Garshev,et al.  The Ce–Ni-Ga system at 670/870 ​K: Magnetic properties and heat capacity of ternary compounds , 2021 .

[2]  R. Pöttgen,et al.  Cd3 and Cd4 clusters in the rare earth (RE) metal-rich phases RE10OsCd3 and RE4OsCd , 2019, Monatshefte für Chemie - Chemical Monthly.

[3]  A. Gribanov,et al.  The crystal chemistry of Ce-rich compounds Ce4RuAl and Ce23Ru7+Al4- (0 ≤ x ≤ 2.97) , 2018, Journal of Alloys and Compounds.

[4]  R. Pöttgen,et al.  The Lutetium-rich Indide Lu13 Ni6 In , 2018, Zeitschrift für anorganische und allgemeine Chemie.

[5]  D. Kaczorowski,et al.  Crystal structures and magnetic properties of novel compounds Sc2CoIn and Sc100Co25In7 , 2018 .

[6]  V. Zaremba,et al.  The Dy-Ni-In system at 870 K: Isothermal section, solid solutions, crystal structures , 2017 .

[7]  Richard Dronskowski,et al.  LOBSTER: A tool to extract chemical bonding from plane‐wave based DFT , 2016, J. Comput. Chem..

[8]  R. Pöttgen,et al.  Zn4 tetrahedra as basic building units in intermediate-valent Ce23Ru7Zn4 , 2015 .

[9]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[10]  Y. Kalychak,et al.  Synthesis and crystal structure of the new indide La8Co2In3 , 2014 .

[11]  A. Saccone,et al.  The 400 °C Isothermal Section of the La-Co-Mg Ternary System , 2014 .

[12]  L. Havela,et al.  Rare-earth rich indides RE8CoIn3 (RE = Y, Dy–Tm, Lu) , 2013 .

[13]  L. Akselrud,et al.  Phase equilibria in the Dy–Fe–In system and crystal structure of Dy6Fe1.72In , 2013 .

[14]  R. Pöttgen,et al.  New rare earth-rich aluminides and indides with cubic Gd4RhIn-type structure , 2011 .

[15]  P. Rogl,et al.  Crystal structure of novel Ni-Zn borides: first observation of a boron-metal nested cage unit: B20Ni6. , 2011, Inorganic chemistry.

[16]  R. Pöttgen,et al.  Cd4 Tetrahedra and Condensed RE6Rh Trigonal Prisms as Building Units in the Rare Earth-rich Compounds RE15Rh5Cd2 (RE = La, Ce, Pr, Nd) , 2011 .

[17]  R. Pöttgen,et al.  New metal-rich compounds RE23Pt7Mg4 (RE = La, Ce, Pr, Nd, Sm) , 2010 .

[18]  R. Pöttgen,et al.  Intermediate-valent Ce23Ru7Mg4 and RE23Ru7Mg4 (RE = La, Pr, Nd) with Pr23Ir7Mg4-type Structure , 2009 .

[19]  R. Pöttgen,et al.  Rare-Earth-Rich Magnesium Compounds RE23Rh7Mg4 (RE = La, Ce, Pr, Nd, Sm, Gd) with Tetrahedral Mg4 Clusters , 2009 .

[20]  R. Pöttgen,et al.  Rare Earth-rich Cadmium Compounds RE23T7Cd4 (T = Co, Ni, Ru, Rh, Ir, Pt) , 2009 .

[21]  P. Rogl,et al.  The ternary system Yb–Cu–Mg: Isothermal section at 400 °C in the range from 0 to 67 at.% Cu , 2008 .

[22]  R. Pöttgen,et al.  Ternary Magnesium Compounds RE23Ni7Mg4 (RE = La, Ce, Pr, Nd, Sm) with Pr23Ir7Mg4 Type Structure† , 2008 .

[23]  R. Pöttgen,et al.  Rare Earth Metal‐Rich Magnesium Compounds RE4IrMg (RE = Y, La, Pr, Nd, Sm, Gd, Tb, Dy) and RE23Ir7Mg4 (RE = La, Ce, Pr, Nd) , 2008 .

[24]  R. Pöttgen,et al.  Transition Metal-centered Trigonal Prisms as BuildingUnits in RE14T3In3 (RE = Y, Ho, Er, Tm, Lu; T = Pd, Ir, Pt) and Y4IrIn , 2007 .

[25]  R. Pöttgen,et al.  Ternary Scandium-rich Indides Sc50T13In3 and Sc50Rh13In3Oy (T = Rh, Ir; y ≈ 8) – Synthesis and Crystal Structure , 2007 .

[26]  R. Pöttgen,et al.  Transition Metal-Indium Substitution in Y3Rh2-type Compounds , 2007 .

[27]  R. Pöttgen,et al.  Rare earth metal-rich indides RE14Rh3−xIn3 (RE=Y, Dy, Ho, Er, Tm, Lu) , 2007 .

[28]  M. Kanatzidis,et al.  REAu2In4 (RE = La, Ce, Pr, Nd): polyindides from liquid indium. , 2007, Inorganic chemistry.

[29]  R. Pöttgen,et al.  Fe2 Pairs as Structural Units in the Indides RE12Fe2In3 (RE = Ho, Er, Tm, Lu) , 2007 .

[30]  R. Pöttgen,et al.  Syntheses and Structure of Er6Co2.19(1)In0.81(1) , 2007 .

[31]  V. Zaremba,et al.  New Indides Sc6Co2.18In0.82, Sc10Ni9In19.44 And Sccu4In – Synthesis, Structure, And Crystal Chemistry , 2006 .

[32]  R. Pöttgen,et al.  New rare earth metal-rich indides RE14Ni3In3 (RE=Sc, Y, Gd–Tm, Lu)—synthesis and crystal chemistry , 2005 .

[33]  R. Pöttgen,et al.  On the crystal chemistry of Tm2Ni1.896(4)In, Tm2.22(2)Ni1.81(1)In0.78(2), Tm4.83(3)Ni2In1.17(3), and Er5Ni2In , 2005 .

[34]  Rolf-Dieter Hoffmann,et al.  New Indides EuAuIn2, EuPdIn4, GdRhIn2, YbRhIn4, and YbPdIn4 , 2000 .

[35]  J. Corbett,et al.  Synthesis, characterization, and bonding of indium clusters: A3Na26In48 (A = K, Rb, Cs) with a novel cubic network of arachno- and closo-In12 clusters , 1993 .

[36]  L. Sójka,et al.  Synthesis and crystal structures of the new indides Dy5Pd2In and Y5Pd2In , 2016 .