Measurement of the Sensitivity Function in a Time-Domain Atomic Interferometer

We present here an analysis of the sensitivity of a time-domain atomic interferometer to the phase noise of the lasers used to manipulate the atomic wave packets. The sensitivity function is calculated in the case of a three-pulse Mach-Zehnder interferometer, which is the configuration of the two inertial sensors we are building at the Laboratoire National de Metrologie et d'Essais-Systeme de References Temps-Espace. We successfully compare this calculation to experimental measurements. The sensitivity of the interferometer is limited by the phase noise of the lasers as well as by residual vibrations. We evaluate the performance that could be obtained with state-of-the-art quartz oscillators, as well as the impact of the residual phase noise of the phase-locked loop. Requirements on the level of vibrations are derived from the same formalism.

[2]  C. Antoine,et al.  Quantum theory of atomic clocks and gravito-inertial sensors: an update , 2003 .

[3]  Rasel,et al.  Atom wave interferometry with diffraction gratings of light. , 1995, Physical review letters.

[4]  G. Stedman,et al.  Ring-laser tests of fundamental physics and geophysics , 1997 .

[5]  S. Chu,et al.  Measurement of the gravitational acceleration of an atom with a light-pulse atom interferometer , 1992 .

[6]  R. McGowan,et al.  Atom interferometer based on Bragg scattering from standing light waves. , 1995, Physical review letters.

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  M. Bahoura,et al.  A cesium fountain frequency standard: preliminary results , 1994 .

[9]  Andre N. Luiten,et al.  Cryogenic sapphire oscillator with exceptionally high frequency stability , 2000, Conference on Precision Electromagnetic Measurements. Conference Digest. CPEM 2000 (Cat. No.00CH37031).

[10]  Philippe Bouyer,et al.  Reaching the quantum noise limit in a high-sensitivity cold-atom inertial sensor , 2003 .

[11]  André Clairon,et al.  Cold Atom Gyroscope for Precision Measurements , 2004 .

[12]  Chu,et al.  Theoretical analysis of velocity-selective Raman transitions. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[13]  Timothy M. Niebauer,et al.  A new generation of absolute gravimeters , 1995 .

[14]  Chu,et al.  Atomic interferometry using stimulated Raman transitions. , 1991, Physical review letters.

[15]  André Clairon,et al.  Heterodyne optical phase-locking of extended-cavity semiconductor lasers at 9 GHz , 1994 .

[16]  T. Gustavson,et al.  Rotation sensing with a dual atom-interferometer Sagnac gyroscope , 2000 .

[17]  A. Peters,et al.  High-precision gravity measurements using atom interferometry , 1998 .

[18]  André Clairon,et al.  Gravimètre à atomes froids , 2004 .

[19]  G. J. Dick,et al.  Local Oscillator Induced Instabilities in Trapped Ion Frequency Standards , 1987 .

[20]  李幼升,et al.  Ph , 1989 .

[21]  F. Riehle,et al.  Optical Ramsey spectroscopy in a rotating frame: Sagnac effect in a matter-wave interferometer. , 1991, Physical review letters.

[22]  S. Topcu,et al.  The BNM watt balance project , 2004, 2004 Conference on Precision Electromagnetic Measurements.

[23]  A. Miffre,et al.  Atom interferometry , 2006, quant-ph/0605055.