Data Fusion in Modern Surveillance

The performances of the systems that fuse multiple data coming from different sources are deemed to benefit from the heterogeneity and the diversity of the information involved. The rationale behind this theory is the capability of one source to compensate the error of another, offering advantages such as increased accuracy and failure resilience. While in the past ambient security systems were focused on the extensive usage of arrays of single-type sensors, modern scalable automatic systems can be extended to combine multiple information coming from mixed-type sources. All this data and information can be exploited and fused to enhance situational awareness in modern surveillance systems. From biometrics to ambient security, from robotics to military applications, the blooming of multi-sensor and heterogeneous-based approaches confirms the increasing interest in the data fusion field. In this chapter we want to highlight the advantages of the fusion of information coming from multiple sources for video surveillance purposes. We are thus presenting a survey of existing methods to outline how the combination of heterogeneous data can lead to better situation awareness in a surveillance scenario. We also discuss a new paradigm that could be taken into consideration for the design of next generation surveillance systems.

[1]  Aleksandra Pizurica,et al.  Object Tracking Using Naive Bayesian Classifiers , 2008, ACIVS.

[2]  Belur V. Dasarathy,et al.  Sensor fusion potential exploitation-innovative architectures and illustrative applications , 1997, Proc. IEEE.

[3]  Yunqian Ma,et al.  Intelligent Video Surveillance : Systems and Technology , 2009 .

[4]  James Llinas,et al.  Revisiting the JDL Data Fusion Model II , 2004 .

[5]  Sonya A. H. McMullen,et al.  Mathematical Techniques in Multisensor Data Fusion (Artech House Information Warfare Library) , 2004 .

[6]  Pramod K. Varshney,et al.  Multisensor Surveillance Systems , 2003, Springer US.

[7]  Robert T. Collins,et al.  Likelihood Map Fusion for Visual Object Tracking , 2008, 2008 IEEE Workshop on Applications of Computer Vision.

[8]  Dariu Gavrila,et al.  Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle , 2007, International Journal of Computer Vision.

[9]  Mongi A. Abidi,et al.  Survey and analysis of multimodal sensor planning and integration for wide area surveillance , 2009, CSUR.

[10]  P. Varshney,et al.  Multisensor surveillance systems : the fusion perspective , 2003 .

[11]  James Llinas,et al.  Handbook of Multisensor Data Fusion : Theory and Practice, Second Edition , 2008 .

[12]  Robi Polikar,et al.  An Ensemble-Based Incremental Learning Approach to Data Fusion , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Wei Zhang,et al.  Object class recognition using multiple layer boosting with heterogeneous features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[14]  Wenjia Wang,et al.  On diversity and accuracy of homogeneous and heterogeneous ensembles , 2007, Int. J. Hybrid Intell. Syst..

[15]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[16]  James Llinas,et al.  Multisensor Data Fusion , 1990 .

[17]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Gérard Chollet,et al.  Special issue on audio- and video-based person authentication , 1997, Pattern Recognit. Lett..

[19]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[20]  Jean-Thierry Lapresté,et al.  Real-Time Tracking with Classifiers , 2006, WDV.

[21]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[22]  Paolo Remagnino,et al.  MONITORING BEHAVIOR WITH AN ARRAY OF SENSORS , 2007, Comput. Intell..

[23]  Takeo Kanade,et al.  Introduction to the Special Section on Video Surveillance , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Felix Naumann,et al.  Data fusion , 2009, CSUR.

[25]  Bruno Lameyre,et al.  Object recognition and segmentation in videos by connecting heterogeneous visual features , 2008, Comput. Vis. Image Underst..

[26]  Gerard T. McKee WHAT CAN BE FUSED , 1993 .

[27]  Timothy Bock,et al.  The Application and Validation of Data Fusion , 1998 .

[28]  N.S.V. Rao A fusion method that performs better than best sensor , 1998 .

[29]  J. Roy,et al.  Data fusion concepts applied to a suite of dissimilar sensors , 1996, Proceedings of 1996 Canadian Conference on Electrical and Computer Engineering.

[30]  Shai Avidan Ensemble Tracking , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  James Llinas,et al.  An introduction to multisensor data fusion , 1997, Proc. IEEE.

[32]  Jaideep Srivastava,et al.  Diversity in Combinations of Heterogeneous Classifiers , 2009, PAKDD.

[33]  Robi Polikar,et al.  An ensemble based data fusion approach for early diagnosis of Alzheimer's disease , 2008, Inf. Fusion.

[34]  D. L. Hall,et al.  Survey of commercial software for multisensor data fusion , 1993, Defense, Security, and Sensing.

[35]  Jiri Matas,et al.  On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Mubarak Shah,et al.  Tracking across multiple cameras with disjoint views , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[37]  Carlo Tomasi,et al.  3D tracking = classification + interpolation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[38]  Jiri Matas,et al.  Training sequential on-line boosting classifier for visual tracking , 2008, 2008 19th International Conference on Pattern Recognition.

[39]  Horst Bischof,et al.  Real-Time Tracking via On-line Boosting , 2006, BMVC.

[40]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Arnold W. M. Smeulders,et al.  Robust Tracking Using Foreground-Background Texture Discrimination , 2006, International Journal of Computer Vision.

[42]  Gunnar Rätsch,et al.  Constructing Boosting Algorithms from SVMs: An Application to One-Class Classification , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Ludmila I. Kuncheva,et al.  Measures of Diversity in Classifier Ensembles and Their Relationship with the Ensemble Accuracy , 2003, Machine Learning.

[44]  Gian Luca Foresti,et al.  Special issue on video communications, processing, and understanding for third generation surveillance systems , 2001 .

[45]  Wilfried Elmenreich,et al.  Using sensor fusion in a time-triggered network , 2001, IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society (Cat. No.37243).

[46]  Subhash C. Bagui,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2005, Technometrics.

[47]  Kagan Tumer,et al.  Classifier ensembles: Select real-world applications , 2008, Inf. Fusion.

[48]  Hongbin Zha,et al.  Robust human tracking based on multi-cue integration and mean-shift , 2009, Pattern Recognit. Lett..

[49]  Robin R. Murphy,et al.  Biological and cognitive foundations of intelligent sensor fusion , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[50]  Ching Y. Suen,et al.  A novel cascade ensemble classifier system with a high recognition performance on handwritten digits , 2007, Pattern Recognit..

[51]  D. L. Hall,et al.  Mathematical Techniques in Multisensor Data Fusion , 1992 .

[52]  Lucien Wald,et al.  A European proposal for terms of reference in data fusion , 1998 .

[53]  Arun Ross,et al.  Multimodal biometrics: An overview , 2004, 2004 12th European Signal Processing Conference.

[54]  Isaac Cohen,et al.  Multi-views tracking within and across uncalibrated camera streams , 2003, IWVS '03.

[55]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[56]  Takeo Kanade,et al.  Algorithms for cooperative multisensor surveillance , 2001, Proc. IEEE.

[57]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.

[58]  Shiming Xiang,et al.  Real-time Object Classification in Video Surveillance Based on Appearance Learning , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Ludmila I. Kuncheva,et al.  Combining Pattern Classifiers: Methods and Algorithms , 2004 .

[60]  Joachim Denzler,et al.  Information Theoretic Sensor Data Selection for Active Object Recognition and State Estimation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[61]  Dino Pedreschi,et al.  Machine Learning: ECML 2004 , 2004, Lecture Notes in Computer Science.

[62]  Alan N. Steinberg,et al.  Revisions to the JDL data fusion model , 1999, Defense, Security, and Sensing.

[63]  Larry S. Davis,et al.  A General Method for Sensor Planning in Multi-Sensor Systems: Extension to Random Occlusion , 2007, International Journal of Computer Vision.

[64]  Ken Baker,et al.  Data Fusion: An Appraisal and Experimental Evaluation , 1997 .

[65]  Belur V. Dasarathy,et al.  Information Fusion - what, where, why, when, and how? Editorial , 2001, Inf. Fusion.

[66]  Seong-Whan Lee,et al.  Integrated segmentation and recognition of handwritten numerals with cascade neural network , 1999, IEEE Trans. Syst. Man Cybern. Part C.

[67]  Grigorios Tsoumakas,et al.  Effective Voting of Heterogeneous Classifiers , 2004, ECML.

[68]  Pramod K. Varshney,et al.  Quality-Based Fusion of Multiple Video Sensors for Video Surveillance , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[69]  Ren C. Luo,et al.  Multisensor integration and fusion in intelligent systems , 1989, IEEE Trans. Syst. Man Cybern..

[70]  Konstantinos A. Tarabanis,et al.  A survey of sensor planning in computer vision , 1995, IEEE Trans. Robotics Autom..

[71]  Ramakant Nevatia,et al.  Optimizing discrimination-efficiency tradeoff in integrating heterogeneous local features for object detection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[72]  Fabio Roli,et al.  Intrusion detection in computer networks by a modular ensemble of one-class classifiers , 2008, Inf. Fusion.

[73]  Peter L. Rothman,et al.  Fusion or confusion: knowledge or nonsense? , 1991, Defense, Security, and Sensing.

[74]  Wei Hu,et al.  AdaBoost-Based Algorithm for Network Intrusion Detection , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[75]  Demetri Terzopoulos,et al.  Surveillance camera scheduling: a virtual vision approach , 2005, Multimedia Systems.

[76]  Jean Rouat,et al.  Robust localization and tracking of simultaneous moving sound sources using beamforming and particle filtering , 2007, Robotics Auton. Syst..

[77]  Ning Xiong,et al.  Multi-sensor management for information fusion: issues and approaches , 2002, Inf. Fusion.

[78]  Xin Yao,et al.  Bagging and Boosting Negatively Correlated Neural Networks , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[79]  P. Grossmann MULTISENSOR DATA FUSION , 1998 .

[80]  Neill W Campbell,et al.  IEEE International Conference on Computer Vision and Pattern Recognition , 2008 .

[81]  Kenneth J. Hintz,et al.  Sensor measurement scheduling: an enhanced dynamic, preemptive algorithm , 1998 .

[82]  Ahmed M. Elgammal,et al.  Boosting adaptive linear weak classifiers for online learning and tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Gian Luca Foresti,et al.  On-line boosted cascade for object detection , 2008, 2008 19th International Conference on Pattern Recognition.

[84]  Mubarak Shah,et al.  Tracking and Object Classification for Automated Surveillance , 2002, ECCV.

[85]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..