Inhibition of aluminum dust explosion by NaHCO3 with different particle size distributions.

[1]  H. Wise,et al.  The effect of metal salts on premixed hydrocarbon—air flames , 1963 .

[2]  J. D. Birchall,et al.  On the mechanism of flame inhibition by alkali metal salts , 1970 .

[3]  D. Jensen,et al.  Kinetics of flame inhibition by sodium , 1982 .

[4]  Tohru Mitani,et al.  Extinction phenomenon of premixed flames with alkali metal compounds , 1984 .

[5]  J. M. Smith,et al.  Kinetics of sodium bicarbonate decomposition , 1986 .

[6]  Dust explosion prevention by addition of thermal inhibitors , 1992 .

[7]  W. Stickle,et al.  Handbook of X-Ray Photoelectron Spectroscopy , 1992 .

[8]  W. Kordylewski,et al.  Comparison of NaHCO3 and NH4H2PO4 effectiveness as dust explosion suppressants , 1992 .

[9]  P. E. Moore Suppressants for the control of industrial explosions , 1996 .

[10]  Paul Amyotte,et al.  Introduction to the special issue on dust explosions. Theme: Hazard evaluation, prevention and mitigation of dust explosions , 1996 .

[11]  Rolf K. Eckhoff,et al.  Prevention and mitigation of dust explosions in the process industries: A survey of recent research and development , 1996 .

[12]  R. Yetter,et al.  Flames structure measurement of single, isolated aluminum particles burning in air , 1996 .

[13]  P. Amyotte,et al.  Determination of Minimum Inerting Concentrations for Combustible Dusts in a Laboratory-Scale Chamber , 2002 .

[14]  John E. Going,et al.  Explosion protection with metal dust fuels , 2002 .

[15]  M. W. Beckstead,et al.  Correlating Aluminum Burning Times , 2005 .

[16]  Xiaohai Jiang,et al.  Suppression effects of powder suppressants on the explosions of oxyhydrogen gas , 2006 .

[17]  C. Wang,et al.  Explosion characteristics of coal gas under various initial temperatures and pressures , 2006 .

[18]  Paul Amyotte,et al.  Solid inertants and their use in dust explosion prevention and mitigation , 2006 .

[19]  E. Dreizin,et al.  Particle combustion rates for mechanically alloyed Al–Ti and aluminum powders burning in air , 2006 .

[20]  Laurent Dupont,et al.  Measuring the violence of dust explosions with the “20 l sphere” and with the standard “ISO 1 m3 vessel”: Systematic comparison and analysis of the discrepancies , 2007 .

[21]  Douglas Schwer,et al.  Numerical simulations of the mitigation of unconfined explosions using water-mist , 2007 .

[22]  Giby Joseph,et al.  Combustible dusts: a serious industrial hazard. , 2007, Journal of hazardous materials.

[23]  Timothy J. Myers Reducing aluminum dust explosion hazards: case study of dust inerting in an aluminum buffing operation. , 2008, Journal of hazardous materials.

[24]  C. Chauveau,et al.  STUDIES ON THE BURNING OF MICRO- AND NANOALUMINUM PARTICLE CLOUDS IN AIR , 2009 .

[25]  Rolf K. Eckhoff,et al.  Understanding dust explosions. The role of powder science and technology , 1997 .

[26]  P. Aguado,et al.  Dust explosion venting in silos: A comparison of standards NFPA 68 and EN 14491 , 2009 .

[27]  F. Williams,et al.  Mitigation of TNT and Destex explosion effects using water mist. , 2009, Journal of hazardous materials.

[28]  X. Ni,et al.  A new type of fire suppressant powder of NaHCO3/zeolite nanocomposites with core–shell structure , 2009 .

[29]  Laurent Perrin,et al.  Experimental investigation and modelling of aluminum dusts explosions in the 20 L sphere , 2010 .

[30]  O. Dufaud,et al.  Ignition and explosion risks of nanopowders. , 2010, Journal of hazardous materials.

[31]  Kenneth L. Cashdollar,et al.  Effectiveness Of Dust Dispersion In The 20-L Siwek Chamber , 2010 .

[32]  E. Dreizin,et al.  Aluminum particle combustion in turbulent flames , 2013 .

[33]  Chad V. Mashuga,et al.  The effect of particle size polydispersity on the explosibility characteristics of aluminum dust , 2014 .

[34]  Paola Russo,et al.  CFD simulations of dust dispersion in the 20 L vessel: Effect of nominal dust concentration , 2014 .

[35]  H. Phylaktou,et al.  Fluorinated halon replacement agents in explosion inerting , 2015 .

[36]  P. Sunderland,et al.  Combustion inhibition and enhancement of premixed methane–air flames by halon replacements , 2015 .

[37]  Jérôme Taveau,et al.  Suppression of metal dust deflagrations , 2015 .

[38]  B. Lin,et al.  Explosion severity of micro-sized aluminum dust and its flame propagation properties in 20 L spherical vessel , 2016 .

[39]  V. Yang,et al.  A general theory of ignition and combustion of nano- and micron-sized aluminum particles , 2016 .

[40]  R. K. Eckhoff,et al.  A catastrophic aluminium-alloy dust explosion in China , 2016 .

[41]  L. Catoire,et al.  On the role of heterogeneous reactions in aluminum combustion , 2016 .

[42]  E. Addai,et al.  Experimental investigations of the minimum ignition energy and the minimum ignition temperature of inert and combustible dust cloud mixtures. , 2016, Journal of hazardous materials.

[43]  Yong Jiang,et al.  Influence of halon replacements on laminar flame speeds and extinction limits of hydrocarbon flames , 2017 .

[44]  Xianfeng Chen,et al.  Effect of dust explosion suppression by sodium bicarbonate with different granulometric distribution , 2017 .

[45]  Bo Wang,et al.  Effects of concentration, temperature, humidity, and nitrogen inert dilution on the gasoline vapor explosion. , 2017, Journal of hazardous materials.

[46]  J. Fortin,et al.  Physical mechanisms involved into the flame propagation process through aluminum dust-air clouds: A review , 2017 .

[47]  Yan Wang,et al.  Methane explosion suppression characteristics based on the NaHCO3/red-mud composite powders with core-shell structure. , 2017, Journal of hazardous materials.