A general model-based polarimetric decomposition scheme for vegetated areas.

A simple vegetation model for polarimetric covariance and coherency matrix elements is presented. The model aims to represent vegetation characteristics which are observable by radar polarimetry, including the average particle anisotropy, the main orientation of the volume, the degree of orientation randomness in the volume, and the terrain slopes. The decomposition consists, in analogy to the Freeman‐Durden model, of volume, surface, and double‐bounce scattering components considering all vegetation characteristics. The goal of this approach is to quantify these parameters and to enable their estimation in a remote sensing parameter inversion framework. In particular, this paper addresses the modeling and the interpretation of the volume component. The retrieval of parameters related to effective particle shapes and the orientation distribution characteristics is presented.

[1]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[2]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[3]  Irena Hajnsek,et al.  Forest biomass estimation using polarimetric SAR interferometry , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[4]  Jong-Sen Lee,et al.  Surface roughness and slope measurements using polarimetric SAR data , 2002, IEEE Trans. Geosci. Remote. Sens..

[5]  Laurent Ferro-Famil,et al.  IMPROVEMENT OF VEGETATION PARAMETER RETRIEVAL FROM POLARIMETRIC SAR INTERFEROMETRY USING A SIMPLE POLARIMETRIC SCATTERING MODEL , 2009 .

[6]  Juan M. Lopez-Sanchez,et al.  Wide-band polarimetric radar inversion studies for vegetation layers , 1999, IEEE Trans. Geosci. Remote. Sens..

[7]  Laurent Ferro-Famil,et al.  Remote sensing of vegetation using multi-baseline polarimetric SAR interferometry (theoretical modeling and physical parameter retrieval) , 2009 .

[8]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[9]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[10]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[11]  Irena Hajnsek,et al.  Inversion of surface parameters from polarimetric SAR , 2003, IEEE Trans. Geosci. Remote. Sens..

[12]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[13]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[14]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..