Negative terahertz conductivity in remotely doped graphene bilayer heterostructures

Injection or optical generation of electrons and holes in graphene bilayers (GBLs) can result in the interband population inversion enabling the terahertz (THz) radiation lasing. The intraband radiative processes compete with the interband transitions. We demonstrate that remote doping enhances the indirect interband generation of photons in the proposed GBL heterostructures. Therefore, such remote doping helps to surpass the intraband (Drude) absorption, and results in large absolute values of the negative dynamic THz conductivity in a wide range of frequencies at elevated (including room) temperatures. The remotely doped GBL heterostructure THz lasers are expected to achieve higher THz gain compared with previously proposed GBL-based THz lasers.

[1]  M. Shur,et al.  Negative terahertz conductivity in disordered graphene bilayers with population inversion , 2015, 1502.01129.

[2]  Andrea Cavalleri,et al.  Population inversion in monolayer and bilayer graphene , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[3]  V. Ryzhii,et al.  Negative dynamic Drude conductivity in pumped graphene , 2014, 1408.7023.

[4]  S. Kar,et al.  Tuning photoinduced terahertz conductivity in monolayer graphene: Optical-pump terahertz-probe spectroscopy , 2014, 1407.2752.

[5]  R. R. Hartmann,et al.  Terahertz science and technology of carbon nanomaterials , 2013, Nanotechnology.

[6]  Extraordinary absorption of decorated undoped graphene. , 2013, Physical review letters.

[7]  V. Ryzhii,et al.  The gain enhancement effect of surface plasmon polaritons on terahertz stimulated emission in optically pumped monolayer graphene , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[8]  M. Vitiello,et al.  Device Concepts for Graphene-Based Terahertz Photonics , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[9]  Andrea Cavalleri,et al.  Snapshots of non-equilibrium Dirac carrier distributions in graphene. , 2013, Nature materials.

[10]  J. Carey,et al.  Molecular doping and band-gap opening of bilayer graphene. , 2013, ACS nano.

[11]  A. Knorr,et al.  Microscopic mechanism for transient population inversion and optical gain in graphene , 2012, 1209.4833.

[12]  M. Koshino,et al.  The electronic properties of bilayer graphene , 2012, Reports on progress in physics. Physical Society.

[13]  J. D. Carey,et al.  Molecular Doping and Band Gap Opening of , 2013 .

[14]  Michael S. Shur,et al.  Plasmonic terahertz lasing in an array of graphene nanocavities , 2012 .

[15]  Hirokazu Fukidome,et al.  Graphene-based devices in terahertz science and technology , 2012 .

[16]  M. Suemitsu,et al.  Spectroscopic Study on Ultrafast Carrier Dynamics and Terahertz Amplified Stimulated Emission in Optically Pumped Graphene , 2012 .

[17]  V. Ryzhii,et al.  Gain Enhancement in Graphene Terahertz Amplifiers with Resonant Structures * , 2012 .

[18]  Taiichi Otsuji,et al.  Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature , 2012 .

[19]  G. Konstantatos,et al.  Hybrid graphene-quantum dot phototransistors with ultrahigh gain. , 2011, Nature nanotechnology.

[20]  J. Schmalian,et al.  Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. , 2011, Physical review letters.

[21]  Vladimir Mitin,et al.  Toward the creation of terahertz graphene injection laser , 2011 .

[22]  J. Kuo,et al.  Opening an electrical band gap of bilayer graphene with molecular doping. , 2011, ACS nano.

[23]  S. Sarma,et al.  Optical and transport gaps in gated bilayer graphene , 2011, 1104.0938.

[24]  V. Ryzhii,et al.  Terahertz surface plasmons in optically pumped graphene structures , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[25]  Sushil Kumar,et al.  Recent Progress in Terahertz Quantum Cascade Lasers , 2010, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  S. Sarma,et al.  Theory of carrier transport in bilayer graphene , 2009, 0912.0403.

[27]  Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides , 2009, 0911.2937.

[28]  Alexander A. Dubinov,et al.  Terahertz Laser with Optically Pumped Graphene Layers and Fabri–Perot Resonator , 2009 .

[29]  M. Ryzhii,et al.  Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures , 2009, 0908.2488.

[30]  Victor Ryzhii,et al.  Terahertz laser based on optically pumped graphene: Model and feasibility of realization , 2009 .

[31]  S. Sarma,et al.  Crossover from quantum to Boltzmann transport in graphene , 2008, 0811.0609.

[32]  F. Guinea,et al.  The electronic properties of graphene , 2007, Reviews of Modern Physics.

[33]  D. N. Basov,et al.  Determination of the electronic structure of bilayer graphene from infrared spectroscopy , 2008, 0809.1898.

[34]  E. Mucciolo,et al.  Numerical studies of conductivity and Fano factor in disordered graphene , 2007, 0711.3202.

[35]  F. Rana,et al.  Graphene Terahertz Plasmon Oscillators , 2007, IEEE Transactions on Nanotechnology.

[36]  V. Fal’ko,et al.  The low energy electronic band structure of bilayer graphene , 2007 .

[37]  F. T. Vasko,et al.  Voltage and temperature dependencies of conductivity in gated graphene , 2007, 0708.2976.

[38]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[39]  V. Ryzhii,et al.  Injection and Population Inversion in Electrically Induced p–n Junction in Graphene with Split Gates , 2007 .

[40]  尾辻 泰一 Negative dynamic conductivity of graphene with optical pumping , 2007 .

[41]  V. Fal’ko,et al.  Landau-level degeneracy and quantum Hall effect in a graphite bilayer. , 2005, Physical review letters.

[42]  H. Liu,et al.  Terahertz quantum-well photodetector , 2004 .

[43]  E. Linfield,et al.  Terahertz quantum cascade lasers , 2003, IEEE MTT-S International Microwave Symposium Digest, 2003.

[44]  R. Stephenson A and V , 1962, The British journal of ophthalmology.